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Abstract. We show that to correctly describe the position of the critical line in
the Kauffman random boolean networks one must take into account percolation
phenomena underlying the process of damage spreading. For this reason, since
the issue of percolation transition is much simpler in random undirected networks,
than in the directed ones, we study the Kauffman model in undirected networks.
We derive the mean field formula for the critical line in the giant components of
these networks, and show that the critical line characterizing the whole network
results from the fact that the ordered behavior of small clusters shields the chaotic
behavior of the giant component. We also show a possible attitude towards the
analytical description of the shielding effect. The theoretical derivations given
in this paper quite tally with numerical simulations done for classical random
graphs.

PACS numbers: 89.75.Hc, 89.75.-k, 64.60.Cn, 05.45.-a

1. Introduction

Almost 40 years ago Stuart Kauffman proposed random Boolean networks (RBNs) for
modelling gene regulatory networks [1]. Since then, beside its original purpose, the
model and its modifications have been applied to many different phenomena like cell
differentiation [2], immune response [3], evolution [4], opinion formation [5], neural
networks [6], and even quantum gravity problems [7].

The original RBNs were represented by a set of N elements,
∑

t =
{σ1(t), σ2(t), ..., σN (t)}, each element σi having two possible states: active (1), or
inactive (0). The value of σi was controlled by k other elements of the network, i.e.

σi(t + 1) = fi(σi1(t), σi2 (t), ..., σik
(t)), (1)

where k was a fixed parameter. The functions fi were selected so that they have
returned values 1 and 0 with probabilities respectively equal to p and 1 − p. The
parameters k and p have determined the dynamics of the system (Kauffman network),
and it has been shown that for a given probability p, there exists the critical number
of inputs [13]

kc =
1

2p(1 − p)
, (2)

http://arxiv.org/abs/0712.0882v1
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below which all perturbations in the initial state of the system die out (frozen phase),
and above which a small perturbation in the initial state of the system may propagate
across the entire network (chaotic phase).

In fact, the behavior of Kauffman model in the vicinity of the critical line kc(p) has
become a major concern of scientists interested in gene regulatory networks. The main
reason for this was the conjecture that living organisms operate in a region between
order and complete randomness or chaos (the so-called edge of chaos) where both
complexity and rate of evolution are maximized [8, 9, 10]. The analogous behavior
has been noticed in Kauffman networks, which in the interesting region described by
eq. (2) show stability, homeostatis, and the ability to cope with minor modifications
when mutated. The networks are stable as well as flexible in this region.

Recently, when data from real networks have become available [11, 12], a
quantitative comparison of the edge of chaos in these datasets and RBN models has
brought an encouraging and promising message that even such simple model may quite
well mimic characteristics of real systems.

Since, however, one has noticed that real genetic networks exhibit a wide range of
connectivities, the recent modifications of the standard RBN take into consideration a
distribution of nodes’ degrees P (k). It has been shown that if the random topology of
the directed network is homogeneous (i.e. all elements of the network are statistically
equivalent), then the network topology can be meaningfully characterized by the
average in-degree 〈k〉, and the transition between frozen and chaotic phase occurs
for [14]:

〈k〉c =
1

2p(1 − p)
. (3)

Several authors [17, 18] have provided a general formula for the edge of chaos in
directed networks characterized by the joint degree distribution P (k, q)

〈kq〉

〈q〉
=

1

2p(1 − p)
, (4)

where k and q correspond to in- and out-degrees of the same node, respectively. The
formula (4) shows that the position of the critical line depends on the correlations
between k and q in such networks. It is also easy to show that the previous results
(2) and (3) immediately follow from (4) if one assumes the lack of correlations
P (k, q) = Pin(k)Pout(q).

Very recently, it has been shown by finite size scaling methods (FSS) that
the critical connectivity 〈k〉FSS

c significantly deviates from the value established by
the Eq. (3), even for large system sizes [19]. More precisely, one observes that
〈k〉FSS

c < 〈k〉c. To support the observation the authors recall other studies [20] which
suggest that gene regulatory networks appear to be in the ordered regime and reside
slightly below the phase transition between order and chaos in opposite to the theory
which proposes the critical line to be an evolutionary attractor.

In the present paper, we suggest other explanation of the observed discrepancy.
We show (both analytically and numerically) that the discrepancies are due to the
percolation phenomena, which become important in the region of small values of the
parameter 〈k〉.

To understand the complexity of percolation phenomena in directed graphs let us
recall the structure of such a graph [23, 26]. In general, a directed graph consists of
a giant weakly connected component (GWCC) and several finite components (FCs).
In the GWCC every site is reachable from every other, provided that the links are



Critical line in undirected Kauffman RBN - the role of percolation 3

treated as bidirectional. The GWCC is further divided into a giant strongly connected
component (GSCC), consisting of all sites reachable from each other following directed
links. All sites reachable from the GSCC are referred to as the giant OUT component,
and the sites from which the GSCC is reachable are referred to as the giant IN
component. The GSCC is the intersection of the IN and OUT components. All
sites in the GWCC, but not in the IN and OUT components, are referred to as the
tendrils (TDs) (see Fig. 1).

Figure 1. General structure of a directed network above the percolation
threshold.

Size of all components listed above has doubtless impact on propagation of
perturbations in directed RBNs. Moreover, GSCC and GWCC start to form at
different values of the parameter 〈k〉 (see Fig. 2a). Although it has been shown
[23, 26] how to find the relative sizes of the components (for example GWCC appears
when 〈kq〉 ≥ 〈q〉), the problem of how to implement the results to the theory of
perturbation spreading in RBNs is still far from being solved. To make the first step
in this direction, and to show the importance of percolation phenomena on dynamics
of RBN we concentrate on undirected case of the model. Although the original RBNs
have been defined as directed ones, the study of undirected networks significantly
reduces complexity of the problem (see Fig. 2).

Figure 2. Schematic plot of sizes of network components as a function of average
node degree in a) directed ER graphs and b) undirected ER graphs.

To this end, we organize the paper as follows. In the next section, we present
numerical methodology and finite-size scaling of perturbation spreading in RBNs. In
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section 3 we derive general relation describing position of the critical line in undirected
RBNs with arbitrary distribution of connections P (k), in the analogy of the mean-field
theory for directed RBNs [13]. Comparing the theory with numerical simulations we
show significant deviations between the both approaches. Then an improved treatment
including percolation phenomena is presented in section 4. A summary of our findings
is given in section 5.

2. Critical line in undirected random graphs - numerical simulations

In order to find the position of the critical line in RBN one has to examine the
sensitivity of its dynamics with regard to initial conditions. In numerical studies such
a sensitivity can be analyzed quite simply. One has to start with two initial states∑

0 = {σ1(0), σ2(0), ..., σN (0)} and
∑̃

0 = {σ̃1(0), σ̃2(0), ..., σ̃N (0)}, which are identical
except for a small number of elements, and observe how the differences between both

configurations
∑

t and
∑̃

t change in time. If a system is robust then the studied
configurations lead to similar long-time behavior, otherwise the differences develop in
time. A suitable measure for the distance between the configurations is the overlap
x(t) defined as

x(t) = 1 −
1

N

N∑

i=1

|σi(t) − σ̃i(t)|. (5)

Note, that in the limit N → ∞, the overlap becomes the probability for two arbitrary
but corresponding elements, σi(t) and σ̃i(t), to be equal. Moreover, the stationary
long-time limit of the overlap x = limt→∞ x(t) can be treated as the order parameter
of the system. If x = 1 then the system is insensitive to initial perturbations (frozen
phase), while for x < 1, the initial perturbations propagate across the entire network
(chaotic phase).

For numerical purposes we define the probability D that the system is sensitive
to perturbations

D =

∑R
x(t=T )<x(0) 1

R
, (6)

where R is the number of generated networks, and T is the number of system updates.
In our simulations we take RN = 106 and T = 200. The Fig. 3a presents a typical
example of D dependence on our control parameter 〈k〉 for different network sizes.
Then, we apply finite-size scaling method [24] to determine how the probability D
scales with the system size. Around some critical point, we predict that systems of all
sizes are indistinguishable except for a change of scale. This suggests

D(〈k〉) = f(φ), (7)

where

φ =

(
〈k〉 − 〈k〉c

〈k〉c

)
N1/ν . (8)

In Eq. (7), f is one of the functions shown in the figure 3a, 〈k〉c is the critical point,
and N1/ν provides the change of scale. Fig. 3b shows how the probability D depends
on the parameter φ with fitted parameters 〈k〉c = 1.45 ± 0.04 and ν = 2.2 ± 0.1.
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Figure 3. Probability D against a) control parameter 〈k〉 and b) rescaled
parameter φ for p = 0.5.

The other problem which should be noted here is the observation that 〈k〉c
depends on the number of initially perturbed nodes. In the Fig. 4 we plot the
dependence of normalized critical connectivity

〈̃k〉c =
〈k〉c(∆) − 〈k〉c

〈k〉c
, (9)

against the number ∆ of initially perturbed nodes in the network of N = 1000
elements. For further calculations we choose ∆ = 0.032 N , since then the error
in 〈k〉c is less than the error arising in finite-size scaling.

1 2 4 8 16 32
1E-3

0.01

0.1

1

〈̃k〉
c

〈̃k〉
c  

 

∆

 p=0.5

 p=0.2
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Figure 4. Normalized critical connectivity against the number of perturbed
nodes in networks of N = 1000 elements. Lines are shown only for better visibility
of the presented dependence.

In Fig. 5, using the method described above, we show the numerically obtained
values of 〈k〉c against the parameter p. For p = 0.5 critical connectivity is minimal,
i.e. 〈k〉c = 1.45. Please note that the size of the giant component for this connectivity
is about one half of the whole network. One can expect that a large number of
isolated nodes and clusters can significantly affect the perturbation spreading rate in
this regime. Moreover, it has been demonstrated [25], that the giant component is
correlated in sparse networks. In the following, we will show that a mean field theory
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which does not take into account these percolation and correlation issues, although
correct for large values of 〈k〉, deviates from numerical results for 〈k〉 close to 1.
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Figure 5. Phase diagram for undirected RBN model. Points show results
obtained by numerical simulations. The line is a solution of eq. (19).

3. Damage spreading in undirected Kauffman RBN - a simple approach

In this section, we derive a mean field formula for the critical line characterizing
Kauffman boolean model in undirected and uncorrelated random graphs with arbitrary
degree distributions P (k). To this end, we partially reproduce and generalize a simple
annealed calculations that have been for the first time carried out by Derrida and
Pomeau [13]. The case of random directed networks has been studied by Aldana [15],
and also by Lee and Rieger [17].

Thus, let xi(k, t) corresponds to the probability that a given element i of degree k

possesses the same value in both configurations
∑

t and
∑̃

t of the considered boolean
network, i.e. σi(t) = σ̃i(t). It occurs either when all the k inputs of σi(t) are equal
to respective inputs of σ̃i(t), or when the function fi, cf. (1), ascribed to the node
i returns the same value for these two configurations. The first case happens with
probability

X(q1, q2, . . . , qk, t − 1) = x(q1, t − 1)x(q2, t − 1) . . . x(qk, t − 1), (10)

where x(qj , t− 1) represents probability that in the previous time step (t− 1) the jth
nearest neighbor of i having degree qj was in the same state in the two considered
configurations. It is also easy to see that the second case arises with probability
p2 + (1− p)2, when at least one of the k inputs of σi differs from its counterpart in σ̃i

giving rise to the same values of σi and σ̃i. Such a situation, in turn, happens with
probability equal to 1 −X(q1, q2, . . . , qk, t− 1). Taking all the above together we find
that the probability xi(k, t) that σi(t) = σ̃i(t) is given by

xi(k, t + 1) = X(q1, . . . , t) + (p2 + (1 − p)2)X(q1, . . . , t)

= 1 − 2p(1 − p) (1 − X(q1, q2, . . . , qk, t)) , (11)

where q1, q2, . . . , qk stand for degrees of nodes found in the nearest neighborhood of
the node i.

The equation (11) describes dynamics of a single node i of degree k. In order to
study boolean dynamics of the whole network one has to average the equation, first
over the nearest neighborhood of i, next over the whole network. The first step simply
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means averaging over the distribution P (q1, q2, . . . , qk/k), which describes probability
that nearest neighbors of i have degrees respectively equal to q1, q2, . . . , qk

x(k, t+1) = 1−2p(1−p)

(
1 −

∑

q1,...,qk

X(q1, . . . , t)P (q1, . . . /k)

)
, (12)

whereas the second step corresponds to averaging of the last equation over the node
degree distribution P (k) characterizing the whole network. Note, that we have omitted
the subscript i at x(k, t + 1) in Eq. (12). After averaging, x(k, t + 1) refers to the set
of nodes having the same degree k.

At the moment, before we proceed with our calculations let us outline structural
properties of the studied networks. At the beginning let us remind that the assumed
lack of higher-order correlations (e.g. three-point or four-point correlations) means
that a given link {i, j} does not influence other links of the considered nodes i and j.
It translates to the fact that the conditional probability P (q1, q2, . . . , qk/k) factorizes

P (q1, q2, . . . , qk/k) = P (q1/k)P (q2/k) . . . P (qk/k), (13)

where P (qj/k) describes probability that a node of degree qj is the nearest neighbor
of a node having degree k. Given the formulas (10), (13) and (15), the equation (12)
further simplifies as follows

x(k) = 1 − 2p(1 − p)


1 −

(
∑

q

x(q)P (q/k)

)k

 , (14)

where, since we are interested in the stationary (i.e. for t → ∞) solutions of this
equation, we have omitted dependence on time t.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

M(y)

y

Figure 6. The map y = M(y) considered in the text. The solid line corresponds
to the situation when the only stable solution is 〈kx〉 = 〈k〉, i.e. x(k) = 1 for all
values of k. The dashed line shows the case when the second solution 〈kx〉 < 〈k〉
appears.

Now, assuming the lack of two point correlations, i.e.

P (qj/k) =
qj

〈k〉
P (qj), (15)

which causes that the nearest neighborhood of each node is the same (in statistical
terms), and then multiplying both sides of Eq. (14) by k, and finally averaging the
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resulting equation over the node degree distribution P (k), we get the desired mean-
field equation which describes stationary states of the Kauffman model defined on
undirected and uncorrelated random networks with arbitrary degree distributions

〈kx〉

〈k〉
= M

(
〈kx〉

〈k〉

)
= 1−2p(1−p)

(
1 −

∑

k

(
〈kx〉

〈k〉

)k
k

〈k〉
P (k)

)
, (16)

where 〈kx〉 =
∑

k kx(k)P (k).
At the moment, note that the state 〈kx〉 = 〈k〉, which in fact corresponds to

the set of conditions x(k) = 1 for all nodes’ degrees k, is always a solution of the last
equation, see Fig. 6. Note also, that this solution may be stable or unstable depending
on properties of the considered map y = M(y), where y = 〈kx〉/〈k〉 (16). In fact, one
can show that the solution loses its stability, when another solution 〈kx〉 < 〈k〉 of this
equation appears. For the first time it happens when

lim
y→1−

dM(y)

dy
= 1, (17)

where the limit y → 1− is equivalent to 〈kx〉 → 〈k〉−. Substituting (16) into (17) we
get the condition for the phase transition between ordered and chaotic behavior of the
Kauffman model defined on undirected and uncorrelated random network

〈k2〉

〈k〉
=

1

2p(1 − p)
, (18)

where 〈k〉 and 〈k2〉 stand for the first and the second moment of the degree distribution
P (k), respectively. In the following we briefly analyze the formula for the critical line
(18) in classical random graphs. The case of scale-free networks P (k) ∼ k−γ , for
which the second moment 〈k2〉 of the degree distribution becomes important, has
been analyzed in [31].

Thus, since in classical random graphs 〈k2〉 = 〈k〉2 + 〈k〉, the formula (18)
simplifies

〈k〉c =
1

2p(1 − p)
− 1. (19)

In the Fig. 5 one can see numerical simulations of the Kauffman boolean model defined
on these graphs as compared with the expression (19). In our previous paper [31] we
have suggested that the visible discrepancy between numerical calculations and their
theoretical prediction for 〈k〉 → 1 (i.e. for p → 0.5) may result from the fact that
〈k〉 = 1 corresponds to the percolation threshold in these networks. A simple heuristic
argument behind this statement was the following: because the size of the largest
component near 〈k〉 = 1 is significantly smaller than the network size (the network
is divided into several disconnected components), any perturbation cannot propagate
across the entire system, and the frozen phase is easier achieved. It means that the
closer percolation threshold 〈k〉 = 1 we are, the more crumbled network (separated
pieces of the whole system) we analyze, and the theoretical prediction given by Eq. (19)
works worse and worse. In fact, comparing the general formula 〈k2〉/〈k〉 = 2 [32] for
the percolation threshold in arbitrary undirected and uncorrelated random network
with the general expression for the critical line (18), one can show that the arguments
exposed in relation to classical random graphs should also apply for the whole class
of the considered networks.

In the next section we show how to adjust the approach presented in this section
in order to correctly describe properties of the analyzed systems in the whole range of
parameters, also in the vicinity of the percolation transition.
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4. The effect of percolation phenomena on damage spreading

In the following, in order to correctly address the problem of damage spreading in the
vicinity of percolation transition, that has been outlined at the end of the previous
section, we use a few important results on percolation phenomena in the considered
class of networks. To begin with, we recall these results. As we are going to directly
(i.e. in the course of numerical simulations) check our derivations in classical random
graphs, together with general formulas describing behavior of arbitrary undirected
and uncorrelated random networks we also provide the respective formulas for these
graphs.

Thus, as we have already mentioned, random graph with a given node degree
distribution P (k) does not need to be connected. However, if

〈k2〉

〈k〉
> 2, (20)

that in classical random graphs translates into

〈k〉 > 1, (21)

the giant component GC emerges which gathers a finite fraction of all nodes and links.
The size of the giant component S, i.e. the probability that an arbitrary node belongs
to GC, is given by the below formula

S = 1 − G0(u), (22)

where u is the solution of the self-consistency equation

u = G1(u), (23)

and 1−u2 is the probability that a link belongs to the giant component. The functions
G0(u) and G1(u) correspond to generating functions of the node degree distribution
P (k), and the conditional distribution P (qj/k) (15), respectively. Since in classical
random graphs G0(x) = G1(x) = e〈k〉(x−1), the formula (22) for these networks
significantly simplifies

S = 1 − e−〈k〉S , (24)

and the expression for u becomes

u = 1 − S. (25)

The general results on percolation transition in random undirected and
uncorrelated networks outlined in the previous paragraph are already well-known.
They have been derived by several authors using different theoretical approaches, see
e.g. [32, 30]. Recently, however, a new interesting results completing our knowledge
in this subject have been obtained by Bia las and Oleś [25]. The authors have shown
that the neighboring nodes in the giant connected components are disassortatively
correlated. They have also derived analytic formulas for the node degree distribution

P ∗(k) = P (k)
1 − uk

S
, (26)

and the joint nearest-neighbor degree distribution

P ∗(k, q) = P (k, q)

(
1 − uk+q−2

1 − u2

)
=

kP (k)qP (q)

〈k〉2

(
1 − uk+q−2

1 − u2

)
, (27)

characterizing the giant component. Let us note, that in the limit u → 0, when
the giant component covers the whole network S → 1, the both distributions
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P ∗(k) and P ∗(k, q) respectively converge to distributions P (k) and P (k, q), which
characterize random uncorrelated networks. The formulas (26) and (27) are crucial
for the further developments of this paper, as they show that although in average
the considered networks are uncorrelated, in the vicinity of percolation transition
their giant components are disassortative (note that we still do not know anything
about higher-order correlations in GCs). Now, since we know that this type of
correlations makes different spreading-like phenomena more difficult [21], we expect
that disassortativity of the giant component is partially responsible for the discrepancy
observed in Fig. 5, with the crumbling of the system as a whole being the second
reason. Below, we show that taking these effects into consideration significantly
improves theoretical prediction for the critical line in the Kauffman model defined
on random uncorrelated networks.

Thus, let us study damage spreading within the giant component of the considered
networks. Knowing properties of this cluster, we can start our analysis from Eq. (14),
which is valid for the general class of networks with two-point correlations. The
conditional probability P ∗(q/k) for the giant component can be calculated from the
standard expression [33]

P ∗(q/k) =
〈k〉∗P ∗(k, q)

kP ∗(k)
, (28)

where

〈k〉∗ =
∑

k

kP ∗(k) = 〈k〉
1 − u2

S
, (29)

is the average degree characterizing this component. Inserting (26) and (27) into (28)
we get

P ∗(q/k) = P (q/k)

(
1 − uk+q−2

1 − uk

)
, (30)

where P (q/k) is given by (15). The last formula (30) can be also written in the
equivalent form

P ∗(q/k) = P ∗(q)

(
q

〈k〉

S

(1 − uq)

)(
1 − uk+q−2

1 − uk

)
, (31)

which turns out to be useful in our further developments.
Now, let us apply the equation (14) to the giant component

x∗(k) = 1 − 2p(1 − p)


1 −

(
∑

q

x∗(q)P ∗(q/k)

)k

 . (32)

Due to the complicated form of the conditional distribution P ∗(q/k) (30), it is
impossible to deduce on possible solutions of the equation (32) in the same way as we
have done it for the case of uncorrelated networks. However, substituting (31) into
(32) we obtain

x∗(k) = 1 − 2p(1 − p)


1 −

(
∑

q

κ(q)w(q, k)P ∗(q)

)k

 , (33)

where

κ(q) = x∗(q)
S

1 − uq

q

〈k〉
, (34)
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and

w(q, k) =
1 − uq+k−2

1 − uk
. (35)

Next, applying a mean field approximation to Eq. (33)

〈κ(q)w(q, k)〉∗ =
∑

q

κ(q)w(q, k)P ∗(q) (36)

≃

(
∑

q

κ(q)P ∗(q)

)(
∑

q

w(q, k)P ∗(q)

)
= κ∗w∗(k),

we get the simplified equation

x∗(k) = 1 − 2p(1 − p)
(

1 − (κ∗w∗(k))
k
)

, (37)

which after some algebra, consisting in multiplying both sides of this equation by
(k/〈k〉)(S/(1 − uk)) and then averaging it over P ∗(k), further simplifies and becomes
equivalent to Eq. (16)

κ∗ = M∗(κ∗) = 1 − 2p(1 − p)

(
1 −

∑

k

(κ∗w∗(k))
k k

〈k〉
P (k)

)
. (38)

The equivalence of the two equations (16) and (38) is visible when u → 0 (i.e.
S → 1). Then, the parameter κ∗, see Eqs. (34) and (36), simplifies as follows

κ∗ =
∑

k

x∗(k)
k

〈k〉∗
S

(1 − uq)
P ∗(k) (39)

≃
∑

k

x∗(k)
k

〈k〉∗
P ∗(k) ≃

〈xk〉

〈k〉
, (40)

where the averages 〈. . .〉∗ and 〈. . .〉 have their standard meaning (in our calculations
′∗′ always refers to the giant component). This equivalence, also makes possible a
similar analytical treatment of Eq. (38), as the one performed in the reference case of
uncorrelated networks, compare Eqs. (14)-(18)).

Thus, in order to find condition for the transition between ordered and chaotic
phase of the Kauffman model defined in giant components of random uncorrelated
networks we have to check when the solution κ∗ = 1 (39), corresponding to x∗(k) = 1
for all nodes’ degrees, becomes unstable. In fact, it happens when

lim
κ∗→1−

dM∗(κ∗)

dκ∗
= 1. (41)

From the equation (38) it follows that the condition has a very simple form

〈k2w∗(k)k〉

〈k〉
=

1

2p(1 − p)
, (42)

where

w∗(k) =
∑

q

w(q, k)P ∗(q) =
∑

q

1 − uq+k−2

1 − uk
P ∗(q) (43)

is defined in Eq. (36). At the moment, let us note that in the limiting case of u → 0,
the parameter w∗(k) → 1, and the formula (42) simplifies to the previous condition
(18).
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Figure 7. Phase diagram for undirected RBN model in classical random graphs.
Dotted line is a solution of basic Eq. (19). Filled points represent numerical
simulations made for the whole network (the same data are shown in Fig. 5).
Open points and dashed line correspond respectively to numerical simulations
and analytic prediction of Eq. (42) for the Kauffman model defined in giant
components only. Solid line is the solution of final eq. (47). Gray area emphasizes
the set of parameters where the chaotic behavior, although present in the giant
component, is not yet visible in the whole network.

It is easy to check, that in the simplest case of classical random graphs the
parameter w∗(k) (43) is given by

w∗(k) =
1 − u − uk−1 + uk+u−1

(1 − u)(1 − uk)
. (44)

Inserting the last formula into (42), and then numerically solving the resulting equation
for 〈k〉 we obtain theoretical prediction for the critical line of the Kauffman model in
giant components of these graphs. In Fig. 7 one can see that numerical simulations
quite tally with the theoretical prediction of Eq. (42). Given the figure, we would also
like to take note of two other interesting effects related to the analyzed problem. First,
the critical line characterizing the giant component significantly differs from the curve
described by the formula (18). It is shifted towards the numerically obtained critical
line characterizing the whole network. The observation is in some sense promising,
as it partially confirms the main proposition of this paper, which states that the
percolation transition is responsible for discrepancies observed in Fig. 5. The second
effect concerns mutual relationship between the behavior of the giant component and
the behavior of the whole network. Since one knows that the giant component makes
up a macroscopic part of the network (it grows linearly with the network size N ,
and becomes infinite in the thermodynamic limit N → ∞) one could expect that
dynamics of the whole network should reflect behavior of the giant component. Thus,
the question is, why the numerically obtained critical line characterizing the whole
network differs from the theoretical prediction for the giant component. In other
words, why, for the set of parameters marked by the light gray area in Fig. 7, the
chaotic behavior of the giant component is not visible in the whole network.

To solve the problem stated at the end of the last paragraph, let us briefly recall
what the numerical simulations of the Kauffman model consist in. Thus, in numerical
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studies we check how the initial perturbation of the system x(0) ≡ 1 − ∆ (5), where
∆ ≪ 1, develops over time. In general, when the parameter x(t = T ) < x(0) we
identify the system as the chaotic one. On the other hand, when x(0) ≤ x(t = T ) ≤ 1
we treat it as being in the ordered phase. In reality, however, due to the fact that
in the vicinity of the percolation transition the considered Kauffman networks are
strongly heterogenous, they consist of the giant component which is escorted by a
number of small tree-like clusters and isolated nodes, the systems should by treated
more carefully.

t=0 t=T

GC

FCs

IPs

Figure 8. Schematic plot of spreading of perturbation in giant component (GC),
finite clusters (FCs) and isolated points (IPs). In GC damage spreads, in FCs it
shrinks, while in IPs it does not change.

To better describe the situation let us choose the system parameters from the
region that is marked by the light gray color in Fig. 7. Then, we introduce a quantity
Ω, which measures chaoticity in the system as a mean damage size caused by a single
node perturbation. If Ω > (<)0 then mean damage size grows(shrinks) in time.
Condition Ω = 0 will allow us to derive the relation for the critical line in the whole
network.

Let us now divide the network into three parts: giant connected component (GC),
finite clusters (FCs) and isolated points (IPs). The figure 8 shows schematically how
the single node perturbation evolves in time in these three parts of the network. In
studied range of parameters the giant component behaves chaotically, i.e. the mean
damage size is larger than initial perturbation and ΩGC > 0. On the other hand, the
small density of connections in finite tree-like clusters does not allow perturbation to
spread out and ΩFCs < 0. Because the state of isolated nodes does not change in time,
then ΩIPs = 0. Now, if one perturb randomly a set of nodes in the whole network,
fraction S of perturbations will be located in GC, fraction (1 − S)(1 − P (k = 0)) will
be located in FCs, and the rest of them, i.e. (1 − S)P (k = 0) will perturb isolated
nodes. Now one can write the condition for transition from the frozen to the chaotic
state in the whole network:

SΩGC + (1 − S)(1 − P (k = 0))ΩFCs = 0, (45)
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where Ω, P (k) and S depend on 〈k〉. This equation shows that the ordered behavior
of small clusters can shield the chaotic behavior of the giant component. Only when
chaoticity in GC is sufficiently developed, this shielding effect becomes neglected.

W

k
f

0

k * k *c
k

Figure 9. Chaoticity Ω (solid line) in the viciity of the critical point 〈k〉∗c . 〈k〉∗

and 〈k〉f are the average node degree in GC and in FCs respectively. Dashed line
presents linear approximation of Ω.

Now, expanding Ω into power series at 〈k〉 = 〈k〉c

Ω = Ω0 +
∂Ω

∂〈k〉
(〈k〉 − 〈k〉c), (46)

where Ω0 = 0 in critical point (cf. Fig. 9), one gets the final equation for the critical
line:

S(〈k〉∗ − 〈k〉∗c) = (S − 1)(1 − P (k = 0))(〈k〉f − 〈k〉∗c), (47)

where 〈k〉f = 〈k〉u (cf. eq.(25) in [25]). The numerical solution of this implicit equation
is presented in Fig. 7 as the solid line.

5. Conclusions

This study was done to investigate the properties of undirected KBN model in the
vicinity of percolation threshold. We derived a mean field formula for the critical
line characterizing KBN model in undirected and uncorrelated random graphs with
arbitrary degree distributions. We have shown that the results of classical mean field
theory differ from these obtained by numerical simulations. We have shown also that,
to explain the discrepancies one has to take into account the effect of correlations
between adjoining nodes in the giant connected component as well as the effect of
shielding by finite size clusters. As one can see the problem is not easy even for
undirected networks. As we have shown in figure 1 and 2 a directedness of the
network introduces further complications into calculations. Nevertheless, we think
that a similar approach can be derived even for that case. We hope that the presented
work will encourage others to pursue these topics in the near future.
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