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Abstract

Using data retrieved from the INSPEC database we have quantitatively discussed a few syn-

dromes of the publish-or-perish phenomenon, including continuous growth of rate of scientific

productivity, and continuously decreasing percentage of those scientists who stay in science for a

long time. Making use of the maximum entropy principle and fluctuation-dissipation theorem, we

have shown that the observed fat-tailed distributions of the total number of papers x authored by

scientists may result from the density of states function g(x; τ) underlying scientific community.

Although different generations of scientists are characterized by different productivity patterns,

the function g(x; τ) is inherent to researchers of a given seniority τ , whereas the publish-or-perish

phenomenon is caused only by an external field θ influencing researchers.

PACS numbers: 87.23.Ge, 89.75.-k, 89.70.+c
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I. INTRODUCTION

Nowadays, (. . . ) Evaluations of scientists depend on number of papers, positions in lists

of authors, and journals’ impact factors. In Japan, Spain and elsewhere, such assessments

have reached formulaic precision. But bureaucrats are not only wholly responsible for these

changes - we scientists have enthusiastically colluded. What began as someone else’s measure

has become our (own) goal.(. . . ) [1]. In fact, a number of scientists all over the world

alter that research is in crisis. Academics are having to publish-or-perish. Scientific articles

become a valuable commodity both for authors and publishers [2]. The politics of publication

does not only concentrate on publishing as valuable articles as possible. Of course, since

articles in leading journals certifies one’s membership in the scientific elite the impact factor

of journals matters but also the total number of publications is of great importance since

frequent publications allow to sustain one’s career, and are well seen when applying for funds.

Authors have to plan when, how and with whom to publish their results. Quoting Lawrence

[1]: The ideal time is when a piece of research is finished and can carry a convincing message,

but in reality it is often submitted at the earliest possible moment.(. . . ) Findings are sliced

as thin as salami and submitted to different journals to produce more papers. Scientists, who

are aware of the publish-or-perish phenomenon warn that research professionalism may be

sacrificed in the pursuit of research grants and fame, or simply for fear of loss of a position.

In this paper, using data retrieved from the INSPEC database, we quantitatively analyze

two syndromes of the publish-or-perish phenomenon: continuous growth of rate of scientific

productivity and continuously decreasing percentage of those scientists who stay in science

for a long time.

The paper is organized as follows. In the next section we start with a simple examination

of scientific productivity distributions for all INSPEC authors together, as it was done by

Lotka [3] and Shockley [4]. Then, we study temporal evolution of the scientists. From the

whole database we draw long-life scientists, i.e. scientists who were doing research for at least

18 years. Having such a set of scientists we divide it into the so-called cohorts including those

who started to publish in a given year T (i.e. T = 1975, 1976, . . . , 1987). We show that

unlike quickly increasing number of all authors listed in the INSPEC database the number

of long-life scientists, as characterized by year of the first publication T , remains almost

constant indicating decreasing percentage of long-life scientists among all researchers. We
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also show that histograms of scientific productivity N(x; t, T ) within T -cohorts, measured by

the number of articles x, change over time t from almost exponential (when cohort contains

young scientists) to clearly fat-tailed (when the same cohort includes mature researchers).

Additionally, we observe that the number of articles produced by a representative of each

cohort increases with the square of seniority τ = t − T i.e. 〈x〉 ∼ τ 2, indicating that each

cohort possesses fixed acceleration parameter a(T ) = ∂2〈x〉/∂τ 2 which, on its own turn,

quickly increases with T . Finally, in Sec. III, we analyze the observed distributions of

scientific productivity in terms of equilibrium statistical physics. We show that the fat-

tailed histograms N(x; t, T ) may result from the inherent density of states function g(x; τ)

characterizing scientific community. We also introduce the parameter θ(t, T ), which has

a similar meaning as the inverse temperature β in the canonical ensemble, and describes

an external field influencing scientists. The parameter allow us to quantify the effect of

publish-or-perish phenomenon.

II. SCIENTIFIC PRODUCTIVITY - FUNDAMENTAL RESULTS

In this study we report on scientific productivity of all authors (over 3 million) listed

in the INSPEC database [5] in the period of 1969 − 2004. The database, produced by

the Institution of Electrical Engineers, provides a few million of records indexing scientific

articles published world-wide in physics, electrical engineering and electronics, computing

and information technology. Although each INSPEC record contains a number of fields

(including publication title, classification codes etc.) for our purposes we have retrieved

only two of them: authors’ names (i.e. names with all initials) and publication year. Having

the data we were able to discover the initial year of one’s scientific activity T (i.e. year of

the first publication) and also the cumulative number of his/her publications in the next

years. Additionally, from the whole data set we have drawn long-life scientists (i.e. scientists

who were productive for at least 18 years, see Fig. 1), and we have divided them into the

so-called T−cohorts, with T having the same meaning as previously.

A few important findings on evolution of scientific community can be immediately drawn

from the simple comparison of the number of all T -authors and the number of those authors

who turned out to be long-life scientists. However, before we discuss how the numbers

and their ratio depend on T , two limitations of our data should be noted. First, since the
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FIG. 1: The figure explains the procedure used in order to retrieve long-life scientists. We assume

that an author belongs to the T−cohort if the period of time that passed between his/her first

and last publication fulfills the relation Tf − T ≥ 17, where Tf is the year of the last publication

indexed in our data set. According to the procedure only the first two authors, whose publication

history is depicted in the figure, are considered to be long-life T -scientists.

INSPEC database does not contain information about articles published before 1969, the

initial year of scientific activity T for scientists indexed in the database in early seventies

may be incorrect. That is why, for further analysis we have restricted ourselves to the

period starting at T = 1975. Second, due to the the criterion of 18 years of activity,

taken when specifying T−cohorts, the number of cohorts is limited to 13, respectively for

T = 1975, 1976, . . . , 1987. Keeping in mind the mentioned constraints one can see (Fig. 2)

that although the number of all authors listed in the INSPEC database increases every year,

the number of long-life scientists remains almost constant (the downward trend observed

in eighties should not be taken into account as it may result from finite-size effects due to

reduction of the period between T + 17 and 2004; consider the case of the 2nd Author in

Fig. 1). The chief conclusion resulting from the above observations is that the percentage of

long-life scientists among all scientists monotonically decreases in time (see inset in Fig. 2).

In the rest of the section we will concentrate on the fundamental features of distributions

describing scientific productivity of authors indexed in INSPEC. As a matter of fact, scien-

tific productivity, measured by the number of papers authored, has a long history of study in

socio- and bibliometrics, with the articles by Lotka [3] and Shockley [4] being famous early

examples. Both of these authors found that the number of papers produced by scientists

has a fat-tailed distribution, exhibiting both a large number of authors who contributed only

a few articles, and a small number of authors who made a very large number of contribu-
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FIG. 2: Number of all authors listed in the INSPEC database and the number of long-life scientists

versus the year of the first publication T .

tions. Being more precise, Lotka (1926) studied a sample of 6891 authors listed in Chemical

Abstracts during the period of 1907 − 1916 finding that the number of authors making x

publications was described by a power law

N(x) ∼ x−γ (1)

with γ ≃ 2, whereas Shockley (1957) investigated scientific productivity of 88 research staff

members at the Brookhaven National Laboratory in the USA finding log-normal distribution

N(x) ∼ 1

s
√

2πx
e−(ln x−m)2/(2s2). (2)

In Fig. 3 we have shown on logarithmic scales histograms of the number of papers written

by: all authors listed in INSPEC and all long-life scientists in the database. As expected,

both distributions are highly skewed, and their fat-tails are due to long-life scientists. One

can also see that the distribution of all authors regardless of their seniority is well described

by the log-normal distribution (2), which for reasons elaborated by Sornette and Cont [6]

(see also [7, 8]) may be confused with distribution having power law tail (1). In the Fig. 3,

apart of the log-normal fit to our data, we have shown that distribution composed of two

power laws also fits our data very well. Nevertheless, the exponents γ for both regions of

the power law scaling significantly differ from the exponent γ ≃ 2 predicted by Lotka.

The reported studies show that scientists differ enormously in the number of papers they

publish. Although, at present the fat-tailed distributions are not so surprising for physicists

5



                                        

                                        

                                        

                                        

                                        

                                        

10
0

10
1

10
2

10
3

10
4

10
1

10
3

10
5

10
7

                                        

                                        

                                        

                                        

                                        

                                        

N
(x
) 
n
u
m
b
er
 o
f 
a
u
th
o
rs
 w
it
h
 x
 p
u
b
li
ca
ti
o
n
s

number of publications x

 all long-life scientists

 

 

number of publications x

10
0

10
1

10
2

10
3

10
4

10
1

10
3

10
5

10
7

g=2.87≤0.03g=1.67≤0.01

 all authors

 log-norm. distr.

 

 

 

 

FIG. 3: Histograms of the number of papers written by: all authors in INSPEC (solid squares)

and long-life scientists in the database (open squares). Solid lines represent fits to the data as

described in the text: log-normal distribution (gray line) with m = 0.43±0.01 and s = 1.69±0.01,

and distribution composed of two power laws (black lines) one for small and intermediate events

(γ = 1.67 ± 0.01) and the other for extreme events (γ = 2.87 ± 0.03).

as they were 20 years ago, the appearance of highly skewed distributions characterizing sci-

entific productivity is still strange since it refers to scientific elite who undergone a rigorous

selection procedure and is expected to be more homogeneous. At the moment, one may for

example suggest that the noticed differences between scientists may result from the hetero-

geneity of the analysed sample (e.g. as is the case in nonextensivity driven by fluctuations

[9, 10]). To be ahead of these suggestions, in the following we will concentrate on analysis

of T -cohorts, as they were characterized at the beginning of this section. Although, the

approach makes our data more homogeneous, we are aware that it still does not take into

account other factors which influence scientific productivity (e.g. access to resources which

facilitate research or geopolitical conditions). In the next section we will try to convince the

readership that the effect of those omitted factors may be understood in terms of a single

function having the same meaning as density of states in equilibrium statistical physics.

Due to our approach, whatever differences are observed among T−scientists they can be

logically decomposed into only two sorts: (i) life-course differences, which are the effects of

biological and social aging, and (ii) cohort differences, which are differences between cohorts

at comparable points in career history. According to our knowledge the only similar analysis
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FIG. 4: Histograms of scientific productivity N(x; t, T ) characterizing cohorts of long-life scientists,

who started to publish in a given year T = 1975 or 1985, and τ = t − T = 6, 12, 18. (Detailed

description of the figure is given in the text.)

of scientific productivity was performed by Allison and Stewart [11], who analysed a sample

of U.S. scientists in university departments offering advanced degrees in biology, chemistry,

physics and mathematics. The authors divided the sample into 8 age strata by the number

of years since Ph.D., representing different cohorts at different points during their career

history. Unfortunately, lacking longitudinal data the authors were only able to observe

life-course differences among scientists, assuming that cohort differences are negligible.

T -cohort a b A B C E τ1

1975 0.025 0.39 0.06 − 1.02 2.86 0.48 −7.24

1977 0.028 0.40 0.03 −1.47 3.09 0.86 −7.49

1979 0.035 0.37 0.06 −0.97 3.00 0.58 −5.38

1981 0.048 0.36 0.01 −2.15 3.50 3.20 −4.60

1983 0.055 0.39 0.01 −2.38 3.63 3.37 −4.53

1985 0.066 0.42 0.04 −1.38 3.26 1.31 −3.64

1987 0.119 0.35 0.07 −1.36 3.25 1.36 −1.80

TABLE I: Values of parameters a, b,A,B,C,E, τ1 for a few T -cohorts. See Eqs. (3), (4), and (14).

In Fig. 4 we have presented how the histogram of scientific productivity N(x; t, T ) de-
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FIG. 5: Change of the average productivity d〈x〉/dτ , and the variance 〈x2〉 − 〈x〉2 of cohorts’

productivity distributions N(x; t, T ) versus seniority τ = t−T . Points represent real data retrieved

from the INSPEC database, whereas solid lined express numerical fits according to Eqs. (3) and

(4). (Detailed description of the figure is given in the text.)

pends on time t as a T -cohort ages. In general, the scenario is the same for all analysed

T -cohorts: N(x; t, T ) changes from almost exponential (when a cohort contains young sci-

entists) to clearly fat-tailed (when the same cohort consists of mature researchers). The

results exemplify life-course differences among long-life scientists, and in some sense confirm

the so-called hypothesis of accumulative advantage [11], which claims that due to a variety

social and other mechanisms productive scientists are likely to be even more productive in

the future, whereas those who produce little original work are likely to decline further in

their productivity.

In order to examine cohort differences we have analysed how the average 〈x〉 and the

variance 〈x2〉 − 〈x〉2 of the distribution N(x; t, T ) depend on the cohort parameter T =

1975, . . . , 1987, and how they change over time t. We have found that the parameters are

well-defined increasing functions of time (see Fig. 5)

∂〈x〉
∂τ

= aτ + b, (3)

and

〈x2〉 − 〈x〉2 = A (τ − B)C , (4)

where τ = t − T and a, b, A, B, C depend on T (see Tab. I).

At the moment, it is worth to mention that although our analysis encompasses only 18
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initial years of cohorts’ history, we have also verified the above relations for 28 years of

activity of the oldest 1975-cohort, finding excellent agreement with the results obtained for

other cohorts and for the shorter period of time (see insets in Fig. 5). Nevertheless, one

should be aware that even the most productive scientists in his/her declining years slow

down pace of working. According to Zhao [12], the optimal age for scientific productivity is

between 25 and 45, reaching the peak for researchers around 37 (i.e. about 18 years since

the beginning of the career). Similar findings has been also reported by Kyvik [13], who

found that publishing activity reaches a peak in the 45−49-year-old age group and declines

by about 30% among researchers over 60 years old. Summing up, in the light of previous

results on the relation between age and productivity, findings reported in our paper apply

to scientists in the most prolific period of their career.

Now, let us briefly comment on the relations (3) and (4). First, note that the linear

dependence on seniority τ in Eq. (4) implies that an average representative of each cohort

possesses an acceleration parameter a, which is fixed during the whole scientific career.

Moreover, the parameter increases with T (cf. Tab. I and Fig. 6), certifying that younger

(in terms of T ) scientists are better skilled to produce more papers than their older colleagues

at the same point of the scientific career. It is a matter of debate whether the differences in a

are due to better adaptation of young people to technological achievements (i.e. computers

and the Internet), or they result from the rough competition between researchers, and are one

of syndromes of the publish-or-perish phenomenon. In the next section, exploiting relations

(3) and (4), we will show that regardless of the reasoning the explanation of accelerated

productivity naturally emerges as a result of treatment of the scientific community by means

of methods borrowed from equilibrium statistical physics.

III. THEORETICAL APPROACH TO SCIENTIFIC PRODUCTIVITY - DEN-

SITY OF STATES UNDERLYING SCIENTIFIC COMMUNITY

In sociometrics, explanations of highly skewed histograms of scientific productivity N(x)

(see Fig. 3) are generally of two (not necessarily exclusive) types [14]. The sacred spark

(i.e. heterogeneity) hypothesis says that the observed discrepancies in scientific productiv-

ity originate in substantial, predominated differences among scientists in their ability and

motivation to do creative research, while the accumulative advantage (i.e. reinforcement)
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FIG. 6: Acceleration parameter a and initial velocity b versus cohort parameter T . As previously,

points represent data retrieved from INSPEC, whereas solid lines express trend in the data.

hypothesis [11, 15] claims that due to a variety of social and other mechanisms productive

scientists are likely to be even more productive in the future. According to the first hy-

pothesis, skewed distributions of hidden attributes characterizing scientists naturally lead

to skewed distribution of productivity, whereas the second hypothesis argues that the ob-

served fat-tailed histogram N(x) results from sophisticated stochastic processes underlying

scientific productivity (see e.g. [4, 16]).

In this section we will present an alternative explanation of the skewed productivity distri-

butions. Since we have already noticed that the fat-tail of the distribution P (x) = N(x)/N

characterizing the set of all authors listed in INSPEC is due to long-life scientists (c.f. Fig. 3),

in the following we shall only concentrate on distributions P (x; t, T ) = N(x; t, T )/N(T )

characterizing T−cohorts (see Fig. 4). In order to describe the scientific community, we will

exploit the maximum entropy principle [17, 18], and we will adopt some of the fundamental

concepts from equilibrium statistical mechanics (like statistical ensemble, phase space, and

density of states). We will also argue, that our approach does not contradict the sociological

hypothesis mentioned at the beginning of the section.

In physics, the notion of statistical ensemble means a very large number of mental copies

of the same system taken all at once, each of which representing a possible state that

the real system might be in. When the ensemble is properly chosen it should satisfy the

ergodicity condition, which guarantees that the average of a thermodynamic quantity across

the members of the ensemble is the same as the time-average of the quantity for a single
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system.

In our approach we will identify a representative of a given T -cohort with a physical

system, and we will try to describe such a system (i.e. a long-life scientist) in terms of

statistical physics. Since (at least now) we do not have access to parallel worlds, in our

approach a large group of copies of the same scientist will be replaced with a large set of

macroscopically similar long-life scientists, i.e. scientists belonging to the same T -cohort,

and taken at a given point in their scientific career τ = t − T . Here, the assumption of

macroscopic similarity means that the considered scientists are exposed to the same external

field (influence) θ(t, T ), which forces (motivates) scientists to publish an average number of

publications 〈x〉(t, T ). The external field (influence) θ has the same meaning as the inverse

temperature β = (kT )−1 which determines the average energy 〈E〉 in the canonical ensemble

[19].

Now, suppose that one would like to establish probability distribution P (Ω) over a given

T−cohort at time t, where

Ω = {y1, y2, . . . , yn} (5)

stands for states (i.e. microstates) of a single scientist, who belongs to the considered cohort

/ensemble. (Let us explain that the parameters yi are coordinates of a hidden phase space

underlying the scientific community, and determining scientific productivity

x = x(Ω) = x(y1, y2, . . . , yn). (6)

Of course, there exists a number of such parameters, including: research field, IQ level,

age, number of coworkers, motivation, funds etc., but as it turns out in the rest of this

section a few important findings about our ensembles may be obtained even without detailed

knowledge on the parameters.) Due to the maximum entropy school of statistical physics

initiated by Edwin T. Jaynes in 1957 [17, 18], the best choice for the distribution P (Ω) is

the one that maximizes the Shannon entropy

S = −
∑

Ω

P (Ω) ln P (Ω), (7)

subject to the constraint

〈x〉(t, T ) =
∑

Ω

P (Ω)x(Ω), (8)
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FIG. 7: Main stage: external field (influence) θ(t, T ) versus seniority τ = t − T for two cohorts

T = 1975 and T = 1985. Subset: productivity parameter defined as κ = θ−1 versus τ for the same

cohorts.

plus the normalization condition
∑

Ω

P (Ω) = 1. (9)

The Lagrangian for the above problem is given by the below expression

L = −
∑

Ω

P (Ω) ln P (Ω) + α(t, T )(1 −
∑

Ω

P (Ω))

+ θ(t, T )

(

〈x〉(t, T ) −
∑

Ω

x(Ω)P (Ω)

)

, (10)

where the multipliers θ(t, T ) (external field) and α(t, T ) are to be determined by (8) and

(9). Differentiating L with respect to P (Ω), and then equating the result to zero one gets

the desired probability distribution over the T−cohort

P (Ω) =
e−θ(t,T )x(Ω)

Z(t, T )
, (11)

where Z(t, T ) represents the partition function (normalization constant), and

Z(t, T ) =
∑

Ω

e−θ(t,T )x(Ω) = eα(t,T )+1. (12)

Before we proceed further, let us make two comments here. First, since each T−cohort

changes over time t a sceptic may bring the validity of our equilibrium approach into ques-

tion. In order to justify the approach we assume that time dependence of T -cohorts may be

considered in terms of quasistatic equilibrium process. (Let us remind that in a quasistatic
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process, due to sufficiently slow dynamics, a system is considered to cross from one equilib-

rium state to another.) The assumption allow us to treat each T−cohort in separate years

t > T as an equilibrium system. The second comment relates to ergodicity of our ensembles.

In statistical physics the ergodic hypothesis says that, over long periods of time, the time

spent in some region of the phase space corresponding to microstates with the same energy

is proportional to the volume of this region, i.e. that all accessible microstates Ω are equally

probable over long period of time. Equivalently, the hypothesis says that time average and

average over the statistical ensemble are the same. In the case of long-life scientists, we

may only speculate about the underlying phase space, its dimensionality and coordinates

(5). Even if we were able to enumerate most of significant coordinates characterizing such

scientists, surely a part of these coordinates, including e.g. motivation, would be impossible

to quantify. Summarizing, given the above and other difficulties it appears impossible to

verify the ergodic hypothesis for our ensembles, and the question - if ergodicity is fulfilled

here - remains open.

Now, having the theoretical framework we are in a position to analyze how the external

field θ(t, T ) influencing scientists depends on T , and how it changes over time t. In order to

calculate the parameter we use the fluctuation-dissipation relation

〈x2〉 − 〈x〉2 = −∂〈x〉
∂θ

= −∂〈x〉
∂τ

(

∂θ

∂τ

)−1

, (13)

which may be simply derived from P (Ω) (11). (Keep in mind that the ensemble averages
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FIG. 9: Density of states functions g(x; τ) underlying different T−cohorts at different stages of

their scientific career τ .

〈x〉 and 〈x2〉, and also θ depend on both t and T .) At the moment, note that in the previous

section we have already found empirical relations corresponding to both sides of the last

formula. Inserting the relations (3) and (4) into (13), after some algebra one obtains

θ(t, T ) = −
∫ τ

τ0

aξ + b

A(ξ − B)C
dξ (14)

= E(τ − B)1−C(τ − τ1) + D,

where parameters a, b, A, B, C, D depend on T , whereas E, τ1 are functions of these param-

eters (see Tab. I).

In Fig. 7 we have presented how the external field θ(t, T ) changes over seniority τ . Since

the field conjugates to the cumulative number of publications, its decreasing character indi-

cates that small values of the field correspond to large productivity, and vice versa - large

fields induce small productivity. (The inverse of θ, i.e. κ = θ−1, stands for a productivity

field which has more obvious sociological interpretation: larger κ enforces larger number of

papers. See inset in Fig. 7.) Having in mind the reverse relationship between θ and the

number of publications x, one can argue that the constant of integration D in (14) must

be equal to zero. The reasoning behind the statement is the following. Given that the

considered long-life scientists never die, still being in the most prolific period of their career,

one may simply imagine that in the limit of τ ≃ t → ∞ the total number of publications

produced by these scientists must approach infinity, what corresponds to θ(∞, T ) = 0, and

respectively D(T ) = 0.
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The above results allow us to further investigate differences between T -cohorts. Compar-

ing values of the external field θ(t, T ) influencing T -scientists at the same point τ = t−T in

their scientific career, one can show that the field is a decreasing function of T (see Fig. 8).

(We have also checked that the decreasing character of θ(T + τ, T ) versus T holds for every

value of τ = 1, 2, . . . , 18.) The above stems from the fact that younger (in terms of T ) sci-

entists publish more than their older colleagues at the same age. The interesting point here

is that statistical physics allows to describe the phenomenon in terms of changing external

field, which leads to accelerated productivity as described in the previous section.

In order to finalize our theoretical approach to scientific productivity we should explain

the mutual relationship between the theoretical distribution P (Ω) (11) and the empirical

distribution P (x; t, T ) (see Fig. 4). Thus, since the two distributions apply to the same

ensembles there should exist a possibility to cross from one distribution to the other. Such

a possibility appears due to the density of states function g(x; t, T ), which expresses the

number of allowed states Ω (cf. Eq. 5) that scientists may be in, given that the number of

publications corresponding to these states equals x (6). Using the concept of the density of

states one can write

P (x(Ω); t, T ) = g(x; t, T )P (Ω), (15)

and respectively the empirical function g(x; t, T ), correct to the multiplicative factor Z(t, T ),

may be obtained from the below expression

g(x; t, T )

Z(t, T )
= P (x; t, T )eθ(t,T )x. (16)

In Fig. 9 we have presented how the empirical density of states g(x; t, T ) depends on x.

The most striking feature about g(x; t, T ) is that it does not depend separately on time t

and T , but it depends on their difference τ = t − T (cf. bunches of curves shown in the

figure)

g(x; t, T ) ≡ g(x; τ). (17)

The above means that the density of states is an inherent characteristic describing researchers

of a given seniority τ . It also certifies that the parameter θ(t, T ) (14) has the meaning of an

external field, which is only responsible for filling of corresponding states (5) in the hidden

phase space underlying scientific community. The analogy between our parameter θ and the

inverse temperature β in the canonical ensemble is indeed very close. External conditions
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FIG. 10: Examples of phase trajectories x(Ω) in the space of scientific motivators Ω =

{y1, y2, . . . , yn} resulting in the corresponding shape of g(x; τ). (Detailed description of the fig-

ure is given in the text.)

expressed by the field θ do not change the considered system, which in our case corresponds

to a scientist characterized by a given value of τ . They only influence the probability (11) of

realization of a state corresponding to a given productivity x (6). In particular, the findings

allow us to say that representatives of younger cohorts usually coauthor much more articles

than their counterparts (in terms of the same τ) belonging to older cohorts. It means

that due to external requirements (which we interpret as publish-or-perish phenomenon)

representatives of younger cohorts are skilled (forced) to contribute more articles.

Finally, before we proceed to conclusions let us briefly comment on the shape of the

function g(x; τ) (see Fig. 9). The function monotonically decreases for small and quickly

increases for large values of x, having the characteristic minimum for intermediate x. One can

argue that the corresponding curvature of g(x; τ) may result from topological requirements

imposed by the relation x(Ω) (6) on the hidden space Ω = {y1, y2, . . . , yn} (5). A simple but

still reasonable example of such a relation is graphically presented in Fig. 10. (Although

the figure presents only two- and three-dimensional phase spaces the below reasoning also

holds for higher dimensions.) In the figure, the direction of the dashed lines expresses

growing number of publications x, whereas the area of the n−dimensional hypersurface is

proportional to the number of states g(x; τ) of a given value of x. As one can see, the

hypersurfaces x(Ω) corresponding to increasing values of x change from convex to concave.

The feature leads to the minimum in the density of states function, and has a nice sociological

interpretation.

In order to outline the mentioned sociological interpretation, let us assume that all moti-
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vators yi influencing scientific productivity have some minimal values. Such an assumption

seems to bee natural since one can not get salary lower than a certain limit, and it is impos-

sible to possess negative number of coworkers. On the other hand, there are no upper limits

for these parameters. We are not even in a position to guess their units. It follows that for

visualization purposes all motivators may be limited to their positive values, as shown in

Fig. 10. Now, in order to justify the suggested convex character of the hypersurface x(Ω)

representing small values of x, one can argue that it corresponds to the leading role of one

selected motivator yi, and insignificant role of other parameters yj 6=i. In some sense, such

a naive thinking on factors influencing scientists is consistent with a common experience

stating that in early stages of career the only one factor makes motivation for scientific

activity (e.g. satisfaction). Along with growing x other motivators start to play a role (e.g.

recognition and being in power), what may be expressed by the mentioned convex-to-concave

crossover.

IV. SUMMARY

In this paper we have attempted to provide a quantitative approach to the publish-or-

perish phenomenon, which refers to the pressure to constantly publish work in order to

further or sustain one’s scientific career. Using data retrieved from the INSPEC database

we have quantitatively discussed a few syndromes of the phenomenon, including continuous

growth of rate of scientific productivity, and continuously decreasing percentage of those

scientists who stay in science for a long time. Methods of equilibrium statistical physics

have been applied for the analysis. We have shown that the observed fat-tailed distributions

of the total number of papers x authored by scientists may result from a specific shape of

the density of states function g(x; τ) underlying scientific community. We have also argued

that although different generations of scientists are characterized by different productivity

patterns, the function g(x; τ) is inherent to researchers of a given seniority τ , and the

publish-or-perish phenomenon may be quantitatively characterized by the only one time- and

generation- dependent parameter θ, which has the meaning of an external field influencing

researchers.
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