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In this paper, we study fluctuations over several ensembles of maximum-entropy random networks. We
derive several fluctuation-dissipation relations characterizing the susceptibilities of different networks to
changes in external fields. In the case of networks with a given degree sequence, we argue that the scale-free
topologies of real-world networks may arise as a result of the self-organization of real systems into sparse
structures with low susceptibility to random external disruptions. We also show that the ensembles of networks
with a given degree sequence and networks characterized by two-point correlations are equivalent to random
networks with hidden variables.
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I. INTRODUCTION

Recently, the statistical properties of real networks �in-
cluding biological, social, and technological systems� have
attracted a large amount of attention among physicists �see,
e.g., �1–3��. It has been realized that, despite functional di-
versity, most real weblike systems share important structural
features, e.g., small average path length, high clustering, and
scale-free degree distribution. A number of network models
have been proposed to embody the fundamental characteris-
tics. The models can be roughly divided into two classes:
static �homogeneous, equilibrium� and evolving �causal,
nonequilibrium�. The second class of causal networks en-
compasses, in particular, the famous Barabási-Albert �BA�
model �4�, whereas the configuration model �5–7� and the
large group of networks with hidden variables �8–10� belong
to the first class of static networks. Although very intuitive,
the mentioned representatives of static random networks are
not properly defined from the point of view of equilibrium
statistical mechanics. Below we briefly outline what the
mentioned lack of appropriateness means with reference to
random networks.

To start with, let us concentrate on the phrase random
network. What does it mean if a network is random? One
possible answer is that there is a large amount of randomness
in the process of network construction. It applies to all the
examples of homogeneous and causal networks quoted in the
previous paragraph. The answer, however, has a few disad-
vantages, the most striking of which is the issue of the quan-
tification of the randomness. Another answer could be that a
random network is a member of a statistical ensemble of
networks and the probability of the occurrence of a given
network in random sampling is proportional to its statistical
weight. Without a doubt, the last treatment directly follows
the principles of equilibrium statistical mechanics.

A simple example could be the configuration model. In
this model, the total number of nodes is fixed to N and de-
grees of all nodes i=1,2 , . . . ,N create a specific degree se-
quence �ki�. Until now, nothing has been said about the con-
nections between nodes. As a rule, random graphs with a
given degree sequence are constructed in the following way:

first, attach to each node i a number ki of stubs �ends of
edges�; next, choose pairs of these stubs uniformly at random
and join them together to make complete edges. Of course,
such a procedure represents a large randomness, justifying
the phrase random networks. On the other hand, however,
the second definition treats the resulting networks as mem-
bers of the ensemble of graphs with the desired degree se-
quence, which seems to be more familiar to physicists.

The concepts of statistical mechanics �including statistical
ensembles, partition functions, averages over ensemble, and
so forth� have already been applied to analyses of complex
networks. Although the majority of recently submitted ar-
ticles still define network models through construction pro-
cedures, there have also been several interesting papers pub-
lished on the genuine statistical mechanics of random
networks �cf. �11–20��. The general idea is similar to all the
above-mentioned papers. The statistical ensemble of net-
works is defined by specifying a set of networks G that one
wants to study �e.g., simple graphs, digraphs, weighted
graphs� and a rule that associates probability distribution
P�G� with these networks G�G. The differences between
the approaches consist of different weight assignment
strategies.

In this study, we develop the information-theoretic ap-
proach to random networks that has been very recently pro-
posed by Park and Newman �18� �see also �13��. Information
theory �21,22� provides a criterion for setting up probability
distributions over a given ensemble on the basis of partial
knowledge and leads to a type of statistical inference. It is
the least biased estimate possible on the given information,
i.e., it is maximally noncommittal with regard to missing
information. Since the procedure consists in entropy maxi-
mization under constraints imposed by the physical condi-
tions of the ensemble, it is also known as a maximum-
entropy estimate �23�.

In this paper, following Park and Newman �18�, we use
Shannon entropy in order to establish probability distribution
over analyzed networks �24�. Park and Newman have pre-
sented a few exact solutions �in the sense of weighted aver-
ages over ensembles� of specific network models, including
undirected networks with a given degree sequence and net-
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works incorporating arbitrary but independent edge prob-
abilities. Here, we analyze these models from the point of
view of fluctuations over ensembles. We discuss several
fluctuation-dissipation relations for the mentioned en-
sembles. We also show that the quoted maximum-entropy
models are equivalent to random networks with hidden
variables �9�.

II. GENERAL DEFINITIONS

In this section, we review the fundamentals of maximum-
entropy random networks presented by Park and Newman
�18�.

In order to correctly define a statistical ensemble of net-
works, one has to specify a set of graphs G that one wants to
study. In the following, we restrict ourselves to labeled
simple graphs �26� with a fixed number of nodes N. A simple
graph has, at most, one link between any pair of vertices and
it does not contain self-loops connecting vertices to them-
selves. Also note that a one-to-one correspondence �isomor-
phism� exists between simple graphs and symmetric matrices
of size N with elements �ij equal to either 0 or 1.

Once the set G of possible networks has been established,
one has to decide what kind of constraints should be imposed
on the ensemble. The choice may be, for example, encour-
aged by properties of real networks such as high clustering,
significant modularity, or scale-free degree distribution. In
fact, due to the mentioned isomorphism between graphs and
matrices, there can be exactly solved only such ensembles
which constraints are simply expressed in terms of an adja-
cency matrix.

Now, suppose that one would like to establish probability
distribution over G in such a way that the expected values
�i.e., averages over the ensemble� of several observables
�xi�G��, i=1,2 , . . . ,r were, respectively, equal to ��xi��. Due
to information theory, the best choice for probability distri-
bution P�G� is the one that maximizes the Shannon entropy

S = − 	
G

P�G�ln P�G� , �1�

subject to the constraints

�xi� = 	
G

xi�G�P�G� �2�

for i=1,2 , . . . ,r, plus the normalization condition

	
G

P�G� = 1. �3�

The Lagrangian for the above problem is given by the ex-
pression

L = − 	
G

P�G�ln P�G� + �
1 − 	
G

P�G�� �4�

+ 	
i=1

r

�i
�xi� − 	
G

xi�G�P�G�� , �5�

where the multipliers � and �i are to be determined by Eqs.
�2� and �3�.

Differentiating L with respect to P�G� and then equating
the result to zero, one obtains the desired probability distri-
bution over the ensemble of graphs with given properties �2�,

P�G� =
e−H�G�

Z
, �6�

where H�G� is the network Hamiltonian

H�G� = 	
i=1

r

�ixi�G� , �7�

and Z represents the partition function �normalization con-
stant�

Z = 	
G

e−H�G� = e�+1. �8�

Finally, in order to complete the section devoted to gen-
eral considerations, it is useful to define the free energy of
the ensemble

F = − ln Z . �9�

The last quantity is of wide use in the rest of the paper.
Now, let us examine the introduced formalism with a few

examples. In the next section, we will analyze fluctuations
over the ensembles presented below.

A. Microcanonical ensemble of random networks

First, let us study the equivalent of the microcanonical
ensemble for maximum-entropy random networks. Maximiz-
ing Shannon entropy �1� subject to only normalization con-
dition �3�, i.e., omitting other constraints �2�, one obtains the
uniform distribution over all simple graphs of size N,

P�G� =
1

�
, �10�

where �=2� N
2

� represents the total number of the considered
networks, i.e., the total number of 0–1 symmetric matrices of
size N. The uniform distribution �10� means that each graph
in the ensemble has the same weight regardless of its
properties.

Since all graphs in the ensemble are equiprobable, one
can simply argue that the probability of a graph having m
links is given by

P�m� =

�
N

2
�

m



2
N
2 � �11�

and, respectively,

�m� = 	
m=0


N

2
�

mP�m� =

N

2
�

2
. �12�

Similarly, the probability of an arbitrary node to have k near-
est neighbors equals P�k�= � N−1

k
� /2N−1, and the average con-

nectivity is �k�= �N−1� /2.
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In fact, the considered microcanonical ensemble of ran-
dom networks is equivalent to the ensemble of classical ran-
dom graphs with the connection probability p= 1

2 . Ensembles
of classical random graphs with an arbitrary linkage prob-
ability will be considered in the next subsection.

B. Classical random graphs

Now, let us consider an ensemble of networks with an
expected number of links �m� �the ensemble is equivalent to
random graphs introduced by Erdös-Rényi�. The Hamil-
tonian �7� for this ensemble is given by

H�G� = �m�G� , �13�

where � represents a field or an inverse temperature. The
value of � is fixed and depends only on �m�. Park and New-
man �18� have shown that the partition function �8� for the
ensemble is equal to

Z = �1 + e−��
N
2 � �14�

and, respectively, the free energy �9� can be written as

F = − ln Z = − 
N

2
�ln�1 + e−�� . �15�

Having probability distribution �6� over an ensemble, one
can, for example, find the relation between the average num-
ber of links �m� and �,

�m� =
�F

��
=

N

2
�

e� + 1
. �16�

Now, since � is fixed, one can express the last formula in
terms of the linkage probability p, which is known from the
theory of classical random graphs

�m� = 
N

2
�p , �17�

where

p =
1

e� + 1
. �18�

Finally, let us point out that in the limit of very small
fields �→0 �high temperatures�, the ensemble of random
networks with an expected number of links is equivalent to
the microcanonical ensemble of random networks �10� intro-
duced in the previous subsection.

C. Networks with a given degree sequence

At the moment, suppose that one would like to deal with
random networks with an expected degree sequence

��ki�� for i = 1,2, . . . ,N . �19�

In this case, the network Hamiltonian is given by

H�G� = 	
i=1

N

�iki�G� , �20�

where the multipliers �i represent a kind of potential as-
signed to each node and they only depend on the expected
degrees �ki� �see Eqs. �24� and �27��. The partition function
for the considered ensemble can be written as �18�

Z = �
i�j

�1 + e−��i+�j�� �21�

and the free energy is

F = − 	
i�j

ln�1 + e−��i+�j�� . �22�

By performing weighted averages over the ensemble, one
can easily prove the following identities: the first one de-
scribes the connection probability between two nodes i and j,

pij =
1

e��i+�j� + 1
, �23�

and the second describes the identity for the average connec-
tivity of a node characterized by the local field �i,

�ki���i� =
�F

��i
= 	

j=1

N
1

e��i+�j� + 1
= 	

j=1

N

pij . �24�

Both expressions show the reverse relation between the two
parameters �i.e., �ki� and �i� that characterize each node. The
relation consists of the following statement: small degrees
correspond to large multipliers and, vice versa, nodes with a
large number of connections possess small multipliers.

Park and Newman �18� have pointed out that instead of
studying networks with an expected degree sequence �19�,
one can deal with networks characterized by an expected
degree distribution P��ki�� �27�. They have argued that one
can produce any degree distribution by a judicious choice of
the distribution of multipliers ���i�. In fact, due to Eq. �24�,
���i� resulting in the desired P��ki�� can be determined from
the expression

���i� = P��ki���d�ki�
d�i

� , �25�

where �ki���i� is given by Eq. �24�. There are, however, a few
subtleties related to the transition between the sequence
��k1� , �k2� , . . . , �kN�� and P��ki��. First, Eq. �25� defines ���i�
as an implicit function that, except for a very few cases,
cannot be explicitly calculated. Second, when performing
such a transition, one has to keep in mind that the phase
space consists of labeled graphs in which every node i
=1,2 , . . . ,N has been assigned its own multiplier �i �i.e., is
distinguishable�. Using ���i� implies that the nodes lose their
identities. In such a case, there is a threat of widening the
original phase space.

To proceed further, let us consider sparse networks. In
this case, connection probabilities �23� factorize

FLUCTUATION-DISSIPATION RELATIONS IN… PHYSICAL REVIEW E 73, 016108 �2006�

016108-3



pij � e−��i+�j� =
�ki��kj�
�k�N

, �26�

where

�ki���i� � e−�i��k�N . �27�

As shown in �9,10�, such ensembles are equivalent to uncor-
related networks. The relation �27� between expected degrees
and their multipliers makes the ensembles very simple for
both Monte Carlo simulations and analytical treatment. In
particular, the distribution of multipliers �25� corresponding
to P��ki�� is simply

���i� = �ki�P��ki�� , �28�

where �ki� is given by Eq. �27�.
There exist, however, some difficulties with the approxi-

mation. First, the connection probability pij �1, Eq. �26�
and thus the assumption of sparse networks is only valid for
networks with non-negative Lagrange multipliers �i.e.,
�i ,� j 	0�. This restriction causes a failure of the approach in
the case of scale-free networks P�k��k−
 with 2�
�3.
The existence of hubs kmax�N1/�
−1� �28�, i.e., nodes with
negative multipliers �see the comment after Eq. �24��, spon-
taneously develops degree correlations �29,30�. It was argued
�14,31,32� that one can omit the correlations by applying the
so-called structural cutoff, i.e., forcing the largest degree to
scale as kmax��N. At the moment, let us stress that the struc-
tural cutoff in uncorrelated networks naturally results in Eq.
�24� when �i→0.

D. Networks with two-point correlations

In order to study random networks with two-point corre-
lations, one may consider a class of Hamiltonians �7� con-
structed on the basis of an expected linkage probability,

H�G� = 	
i�j

�ij�ij�G� . �29�

In the preceding expression, �ij�G� is an element of the ad-
jacency matrix representing the graph G, and �ij character-
izes field coupled to the hypothetical link �i , j�. The partition
function and the free energy for the ensemble are given by

Z = �
i�j

�1 + e−�ij�, F = − 	
i�j

ln�1 + e−�ij� . �30�

Comparing Eqs. �21� and �30�, one can see that the previous
ensemble of networks with an expected degree sequence is a
special case �for �ij =�i+� j� of networks with arbitrary two-
point correlations. Similar to Eq. �23�, one can also find that

pij = ��ij� =
�F

��ij
=

1

e�ij + 1
. �31�

III. FLUCTUATIONS AND RESPONSES

In classical thermodynamics, fields interacting with a sys-
tem have conjugate variables that represent the response of
the system to changes in the corresponding field. For ex-

ample, the response of a gas to a change in pressure is a
change in volume. The pressure p is the conjugate variable to
the volume V. Similarly, the magnetization M of a magnet
changes in response to the applied field B. These relations
are produced by terms in the Hamiltonian of the form �X,
where � is a field and X is the conjugate variable to which it
couples. Note that the above also holds for maximum-
entropy random networks �see Eq. �7��,

H�G� = 	
i=1

r

�ixi�G� . �32�

Taking advantage of Eqs. �6�–�9�, expectation values �xi�
of observables xi can be calculated as first derivatives of the
free energy with the appropriate field �i �cf. Eqs. �16�, �24�,
and �31��,

�xi� = 	
G

xi�G�P�G� =
�F

��i
. �33�

Similarly, second derivatives of the free energy F give the
mean-square fluctuations of the variables

�xi
2� − �xi�2 = −

�2F

��i
2 . �34�

Now, inserting Eq. �33� into Eq. �34�, one obtains a very
important result

�xi
2� − �xi�2 = −

��xi�
��i

= �i
���, �35�

which is known as the fluctuation-dissipation theorem
�FDT�. The theorem states that fluctuations in an observable
xi are proportional to the susceptibility �i

��� of the observable
to its conjugate field �i. Remember that the susceptibility �i

���

measures the strength of the response of xi to changes in �i.
In reality, due to practical purposes, it is often simpler to
analyze the susceptibility �i

�
� to another field 
i that directly
depends on �i �35�,

−
��xi�
��i

= −
��xi�
�
i

�
i

��i
=

�
i

��i
�i

�
�, �36�

where �
i /��i is the transitional derivative.
Probably the best known example of the theorem �35� is

the one arising from fluctuations of energy in the canonical
ensemble,

�E2� − �E�2 = −
�E

��
= kT2CV, �37�

where CV=��E� /�T is the heat capacity �or thermal suscep-
tibility�, whereas kT2=�� /�T is the respective transitional
derivative. Another example relates fluctuations in the mag-
netization to the magnetic susceptibility

�M2� − �M�2 =
1

�

�M

�B
=

1

�
��B�. �38�

The fluctuation-dissipation theorems �35�–�38� are inter-
esting for a number of reasons. First, they join both the mi-
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croscopic description �left-hand side� and macroscopic prop-
erties �right-hand side� of the considered systems. Second,
they relate the actual state �fluctuations� of the systems to
their future behavior �response�. Third, due to the FDT,
phase transitions certified by singularities in susceptibilities
can also be reported by large-scale fluctuations.

Extending the idea of susceptibility, one can consider
what happens with a variable xi when one changes the value
of a field � j. To study the problem, one can define a gener-
alized susceptibility �ij

���, which is a measure of the response
of �xi� to the variation of the field � j,

�ij
��� = −

��xi�
�� j

. �39�

Again, the susceptibility �ij
��� is a second derivative of the

free energy,

�ij
��� = −

�2F

��i�� j
= �xixj� − �xi��xj� . �40�

The issue of generalized susceptibilities is of special interest
in lattice systems �32�, where the variables xi may represent
the same observable x but are measured in different spatial
points i=1,2 , . . . ,r. Then, susceptibility �ij

��� is just the two-
point correlation function between sites i and j.

In the following, we will concentrate on fluctuations over
a few selected ensembles of random networks.

A. Classical random graphs

At the beginning, let us consider the ensemble of classical
random graphs. By definition, the average number of links
�m� is fixed in the ensemble. As stressed at the beginning of
the section, fluctuations exist around the average. In fact, the
probability of a graph G with m links is given by

P�G� =
e−�m�G�

Z
= pm�1 − p�
N

2 �−m. �41�

The variance of the above distribution calculated from Eq.
�35� is very similar to Eq. �37�,

�m2� − �m�2 = −
��m�
��

= −
��m�
�p

�p

��
= p�1 − p�Cm, �42�

where Cm=��m� /�p= � N
2

� is the link capacity in classical ran-
dom graphs. Note that for a given network size N, the link
capacity does not depend on the linkage probability Cm�p�
=const �classical ideal gas reveals the analogous behavior
CV�T�=const�.

B. Networks with a given degree sequence

Now, let us continue with random networks characterized
by an expected degree sequence �19�.

Taking advantage of Eqs. �23� and �24�, fluctuation-
dissipation relations �35� for the ensemble may be written in
the following form:

�i
��� = −

��ki�
��i

= �ki
2� − �ki�2 = 	

j

pij�1 − pij� = �ki� − 	
j

pij
2 .

�43�

At the moment, before delving into the discussion of the last
expression, let us note that the susceptibility �i

��� is also
given by the following formula:

�i
��� = − 	

j

��ki�
�pij

�pij

��i
= − 	

j

�pij

��i
Cij , �44�

where Cij =��ki� /�pij represents the link capacity. Here, since
Cij =1, the fluctuations in node degrees result only from the
transitional derivative �pij /��i.

The importance of the two above identities lies in the fact
that, from the fluctuations over degrees of nodes character-
ized by the same local field �i, one can deduce the future
behavior of the nodes in the face of possible changes in �i.
Large �small� fluctuations correspond to high �low� local sus-
ceptibility �i

���.
Now, let us note that in the case of small degrees �see also

the assumption of sparse networks �27��, the fluctuation-
dissipation relation �43� gets a simplified form

�ki
2� − �ki�2 = �ki� , �45�

indicating the Poissonian fluctuations. However, in the case
of sparse homogeneous networks, one can omit the last term
in Eq. �43�. In sparse scale-free networks with the character-
istic exponent 2�
�3, the mentioned term is dominated by
hubs and the nodes’ susceptibilities �i

��� are much smaller
than their expected degrees �ki�. The total network suscepti-
bility decreases, making the system resistant against random
changes in the landscape of multipliers and simultaneously
susceptible to the behavior of supernodes �i.e., hubs� �33,34�.

In order to establish a better understanding of the state-
ment included in the last paragraph, let us consider a trivial
network consisting of N nodes with expected degrees
�k�=1 and one supernode with the tunable desired degree
�k*�=1,2 , . . . ,N �in the sequel, the parameters denoted by
the star apply to the supernode�. Adjusting the degree of the
supernode makes it possible to smoothly pass between regu-
lar graphs �for �k*�=1� and star networks �for �k*�=N� �see
Fig. 1�. The transition enables an understanding of what the
reduced network susceptibility consists in.

FIG. 1. Schematic representation of networks possessing
N=19 nodes with one nearest neighbor �k�=1 and the supernode
�the gray one� with the tunable connectivity �k*�=1,2 , . . . ,N.
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First, let us find the Lagrange multipliers � and �* corre-
sponding to the nodes of the considered ensemble. Using
Eq. �24�, one can see that the parameters fulfill the set of
equations

1 =
N − 1

e2� + 1
+

1

e�+�*
+ 1

,

�k*� =
N

e�+�*
+ 1

.

Solving the above equations for � and �* �see Fig. 2�a��, one
gets

� =
1

2
ln�N2 − 2N + �k*�

N − �k*� � ,

�* = ln�N − �k*�
�k*� � − � .

Next, inserting the multipliers into Eq. �23� and then using
Eq. �43�, one obtains the susceptibilities of expected degrees
due to changes in the nodes’ intensive parameters. The rela-
tive susceptibilities are given, respectively, by

� = −
1

�k�
��k�
��

= 1 −
�N − �k*��2

N2�N − 1�
−

�k*�2

N2 �46�

for the bulk of nodes and

�* = −
1

�k*�
��k*�
��* = 1 −

�k*�
N

�47�

for the supernode.
The behavior of susceptibilities �46� and �47� is depicted

in Fig. 2�b�. One can see that the susceptibilities decrease to
0 when the expected degree of hub �k*� approaches N. In the
region of the vanishing susceptibilities, the small changes in
the fields � and �* poorly affect the topological features �i.e.,
�k*�� of the considered networks �cf. Fig. 2�a��. The last
statement supports our previous claim of the resilience of
such networks against random external interference. The
large �k*� makes it so that the supernode accumulates most of
the links present in the system and causes a relatively small
number of network realizations that both �i� fulfill physical
constraints of the ensemble and �ii� possess significant statis-
tical weight. For example, only one such a realization exists
in the limiting case of the star network with k*=N.

IV. EQUIVALENCE OF MAXIMUM ENTROPY
NETWORKS AND NETWORKS WITH HIDDEN

VARIABLES

In this section, we continue the thread of Poissonian fluc-
tuations �45�.

Random networks with hidden variables are simply de-
fined through the construction procedure that consists of only
two steps.

�i� First, prepare N nodes and assign them hidden vari-
ables that are independently drawn from the probability dis-
tribution R�h�.

�ii� Next, link each pair of nodes �i , j� with a probability
rij.

One can show that the uncorrelated networks with hidden
variables arise from the factorized connection probability

rij =
hihj

�h�N
, �48�

whereas networks with two-point correlations require more
sophisticated expressions for rij.

Comparing the above short review to our previous results
on sparse networks with an expected degree sequence �Eq.
�26�� allows one to deduce the equivalence of the two ap-
proaches. In the course of the section, we will argue that the
claimed equivalence also holds for networks with two-point
correlations. We will prove it by recovering the so-called
Poissonian propagators characterizing both correlated and
uncorrelated sparse networks with hidden variables �9�.

A. Networks with a given degree sequence

At the moment, it is clear that the expected degree of node
i is �ki�, but due to ensemble fluctuations, its actual degree ki

changes from network to network. Our aim is to find the
so-called propagator P�ki ��i�, i.e., the degree distribution of
the node given that it is characterized by the multiplier �i.

First, let us reformulate the probability of a graph G in the
ensemble

FIG. 2. �Color online� �a� Lagrange multipliers � and �* as a
function of �k*�; �b� relative susceptibilities � and �* as a function
of �k*�. Here, we have assumed N=100.
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P�G� =
e−H�G�

Z
, �49�

where H�G� and Z are, respectively, the graph Hamiltonian
�20� and the partition function �21�. Taking advantage of the
connection probability pij �23�, P�G� can be written in a
similar form, as in the case of classical random graphs �41�,

P�G� = �
i�j

��i, j� , �50�

where

��i, j� = pij
�ij�1 − pij��1−�ij�, �51�

whereas �ij are elements of the adjacency matrix describing
G and they are equal to either 1 or 0 depending on whether i
and j are connected or not.

In the following, without the loss of generality, we will
concentrate on node i=1. Having P�G�, one can calculate the
probability P���1j�� of the node to have a given linkage pro-
file ��1j� �e.g., �0,0,0,1,0,1,…,0��,

P���1j�� = 	
G*

P�G�

= �
j

��1, j� �
2�i�j

	
�ij=0

1

��i, j�

= �
j

��1, j� , �52�

where the first sum runs over all networks G* with the fixed
sequence ��1j� �i.e., the fixed neighborhood of the node
i=1�. Now, in order to obtain P�k1 ��1�, one has to sum the
probabilities �52� over different sequences ��1j�* represent-
ing the same degree k1=	 j�1j,

P�k1��1� = 	
��1j�

*

P���1j�� . �53�

Let us also stress that formula �43� describes the variance of
the above distribution. In fact, both expressions �43� and �53�
certify that fluctuations are intrinsic to the construction
scheme based on Lagrange multipliers and it is impossible to
avoid them. It means that the considered approach allows
one to recover the desired degree distribution only up to
fluctuations. In particular, the relation �43� shows that the
standard deviation of the propagator P�k1 ��1�= P�k1 � �k1��
�53� grows slower than ��k1�, therefore the fluctuations
are significant in sparse networks �with values of connectiv-
ity of order 1� and, respectively, they are unimportant in
dense networks.

Up to this point, the derivation of P�k1 ��1� has been ex-
act. Now, before proceeding with approximations, let us test
the formula �53� against the simplest ensemble, i.e., net-
works with an expected homogeneous degree sequence
P�k�=��k , �k��. In the ensemble, all nodes have the same
desired degree �k� and also ∀i=1

N �i=�. It is easy to check that
the degree distribution of an arbitrary node �53� is given by

P�k��� = 
N − 1

k
�pk�1 − p�N−1−k, �54�

where the binomial factor in the front of the expression arises
from the fact that � N−1

k
� different connection profiles corre-

sponding to degree k and p= �e2�+1�−1 �23� exist �please do
not confuse it with Eq. �18�, where � has a different mean-
ing�. One should not be surprised with the last result. If it is
not obvious, let us stress that the ensemble of networks with
an expected homogeneous degree sequence is in fact equiva-
lent to the ensemble of classical random graphs. To become
familiar with the statement, compare the formulas �14� and
�21�.

Now, in order to recover the claim of equivalence be-
tween the considered maximum-entropy models and random
networks with hidden variables, one has to apply the mean-
field approximation to the expression �53�,

P�k1��1� � 
N − 1

k1
��p1j�k1�1 − �p1j���N−1−k1�, �55�

where �p1j�=	 jp1j / �N−1�= �k1� / �N−1� �24�. The assump-
tion of sparse networks enables further simplification of the
distribution

P�k1��1� �
e−�k1��k1�k1

k1!
. �56�

The Poissonian propagator �56� indicates the mentioned
equivalence of the considered maximum-entropy networks
and the well-known class of uncorrelated random networks
with hidden variables �8� �Lagrange multipliers correspond
to hidden attributes�.

The key point to notice with reference to the last expres-
sion is that due to the Poissonian fluctuations in the region of

small degrees, real connectivity distributions P̃�k� observed
in single realizations of the considered network may strongly
differ from the desired degree distribution P�k�. In general,
the observed degree distributions are given by the expression
below �35�,

P̃�k� = 	
�k�

P�k��k��P��k�� = 	
�k�

e−�k��k�k

k!
P��k�� , �57�

where P�k � �k��= P�k ��� �56�. Averaging the connectivity dis-

tribution P̃�k� over many networks also does not reduce the
effect of Poisson transformation �57�. Only the average over
many instances of given nodes will show the desired degree
distribution.

B. Networks with two-point correlations

One can show that the probability of a graph G in the
ensemble �29� can be transformed into the same form �50� as
the one for random networks with an expected degree se-
quence, where the linkage probability is given by Eq. �31�.
Performing the same calculations as in the case of ensembles
analyzed in the previous subsection, one can prove that, in
the limit of sparse networks, the degree distribution of a
specific node is Poissonian �56�,
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P�k1���1,i�� �
e−�k1��k1�k1

k1!
, �58�

where �k1�=	ip1i and p1i represents the connection probabil-
ity given by Eq. �31�. Again, the last formula supports the
claimed equivalence between the analyzed maximum-
entropy networks with two-point correlations and the class of
correlated networks with hidden variables �9�.

V. CONCLUSIONS

In this paper, we have developed the information-theoretic
approach to random networks that has been very recently
proposed by Park and Newman �18�. We have concentrated
on fluctuations over ensembles of undirected networks with a
given degree sequence and networks characterized by two-
point correlations. We have studied a few fluctuation-
dissipation relations characterizing the susceptibilities of dif-

ferent networks to changes in the external fields. In the case
of networks with a given degree sequence, we have argued
that the scale-free topologies of real networks may arise as a
result of the self-organization of real systems into sparse
structures with low susceptibility to random external disrup-
tions. Finally, we have revealed that maximum-entropy net-
works are equivalent to random networks with hidden vari-
ables. We have also shown that Poissonian fluctuations can
destroy the validity of the construction scheme in sparse net-
works, based on Lagrange multipliers.
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