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Mean-field theory for clustering coefficients in Barabasi-Albert networks
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We applied a mean-field approach to study clustering coefficients in Bsratimert (BA) networks. We
found that the local clustering in BA networks depends on the node degree. Analytic results have been
compared to extensive numerical simulations finding a very good agreement for nodes with low degrees.
Clustering coefficient of a whole network calculated from our approach perfectly fits numerical data.
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INTRODUCTION m 1
_ Pij=% \/—— (3
During the last decade networks became a very popular tit;

research domain among physicigfer a review see Refs.
[1-3]). It is not surprising, since networks are everywhere.lt was shown that the degree distribution in BA network
They surround us. In our daily life we participate in dozensfollows a power law
of them. A number of social institutions, communication, and
biological systems may be represented as networks, i.e., sets 2m?2
of nodes connected by links. It was observed that despite P(k)= — (4)
functional diversity most of real web-like systems share K
similar structural properties. The properties are: fat-tailed de-
gree distribution(that allows for hubs, i.e., nodes with high wherek=m,m+1, ... myt. The power-law degree distri-
degree, small average distance between any two ndtles  bution is characteristic of many real-world networks and the
so-calledsmall worldeffect and a large penchant for creat- scaling exponentrga=3 is close to those observed in real
ing cliques(i.e., highly interconnected groups of nogles systemq a,¢4 is roughly limited to the rangél—-3)]. It was

A number of network construction procedures have beemlso shown that the BA model is a small world. The mean
proposed to incorporate the characteristics. The Baiaba distance between sites in the network havimgdes behaves
Albert (BA) [4,5] growing network model is probably the asl~Int/Inint [6,7]. The only shortcoming of the model is
best known. Two important ingredients of the model are conthat it does not incorporate a high degree of cliqueness ob-
tinuous network growth and preferential attachment. The netserved in real networks.
work starts to grow from an initial cluster ah fully con- In this paper we study cliqueness effects in BA networks.
nected sites. Each new node that is added to the networkhe cliqueness is measured by the clustering coeffidiznt
creategn links that connect it to the previously added nodes.[8,9]. The clustering coefficien€; of a single node de-
The preferential attachment means that the probability of @cribes the density of connections in the neighborhood of this
new link to end up in a vertekis proportional to the con- node. It is given by the ratio of the numbEy of links be-
nectivity k; of this vertex tween the nearest neighborsiaind the potential number of

such linksE, = ki(ki—1)/2,
k:
I=m——. D) o_FE 2E;

2K B Kk -1

®)

Taking into account thak jk;=2mt the last formula may be The clustering coefficien€ of the whole network is the av-
rewritten asll;=k;/(2t). By means of mean-field approxi- erage of all individualC;’s. It is known, from numerical
mation[5] one can find that the average degree of a node calculations, that the clustering coefficient in BA networks
that entered the network at timigincreases with time as a rapidly decreases with the network sizen this article we

power law apply a mean-field approach to study the parameter. Our cal-
culations confirm that in the limit of largeg¥ 1) and dense

t (m>1) BA networks the clustering coefficient scales as the
ki(t):m\/t;- 2 clustering coefficient in random grapfik0—12 with an ap-

' propriate scale-free degree distributi@h

Taking advantage of the above formula one can calculate the )
probability that two randomly selected nodeandj are near- c= (m—1) (Int) 6)
est neighbors. It is given by 8 t
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We also show that the individual clustering coeffici€htin
the BA network weakly depends on the node’s dedtee

The dependence is almost invisible when one looks at nu-

merical data presented by other authidr3].

MEAN-FIELD APPROACH

Let us concentrate on a certain nada a BA network of
sizet. We assume thah=2. The case ofn=1 is trivial. BA
networks withm=1 are trees thus the clustering coefficient
in these networks is equal to zero. By the definiti&h the
clustering coefficien€; depends on two variablds andk; .

Since in the BA model only new nodes may create links, the

coefficientC; changes only when its degr&echanges, i.e.,
when new nodes create connectionsi tand x=0, ... m
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—1 of its nearest neighbors. The appropriate equation for FIG. 1. The initial value of the local clustering coefficiei(t;)

changes ofC; is then

dc;, o
d_tl = XZO PixACix, (7)

(averaged over 1000 BA netwopks

ﬁ__ m Cos m(m—1)Int (11
dt  (mt+t) | A(mBtitt)

Solving the equation fo€; one gets

whereAC;, denotes the change of the clustering coefficient

when a new node connects to the nodad tox of the first

neighbors ofi, whereas;, describes the probability of this

event.AC,, is simply the difference between clustering co-
efficients of the same nodecalculated after and before a
new node attachment

C2E+x) 2§ 2C 2%
k1) kk—-1)  k+1l kkt1)
(8)

AC

The probabilityp;, is a product of two factors. The first
factor is the probability of a new link to end up in The
probability is given by Eq(1). The second one is the prob-
ability that among the rest oftf— 1) new linksx links con-
nect to nearest neighbors oflt is equivalent to the prob-
ability that (m—21) Bernoulli trials with the probability for
success equal i, k;j /2 k,=Z;, k;/(2mt) result inx suc-
cesses X, runs over the nearest neighbors of the node
Replacing the sunx;, by an integral one obtains

t m
J* 1
Summarizing the above discussion one yields the relation

fe e

Now, inserting Eqs(2), (8), and(10) into Eq.(7) one obtains
after some algebra

kilnt

kilnt
Tat )\

4t

ki m—1

Z_t(x (10)

Bix:

(m—1)

O o vm?

It24\ﬁlt8\ﬁ+8
(Int) mVi T m Vi

(12

where B is an integration constant and may be determined
from the initial conditionC;(t;) that describes the clustering
coefficient of the nodé exactly at the moment of its attach-
mentt;

m2

8(m—1)

(Int;)?

1
Ci(ti)=§; EU: PijPi,Pj, /(5) = t

(13

Following the notation introduced by Bianconi and Capocci
[14], the initial clustering coefficien€,(t;) may be written

as
L—t-

C('E)_i
i (rzn)

d(Ns(t))

ot (149

where d(N3(t))/dt describes how the number of triangular
loops increases in time. Figure 1 shows the prediction of Eq.
(13) in comparison with numerical results. For small values
of t;, the numerical data differ from the theory in a signifi-
cant way. This can be explained by the fact that the formula
for the probability of a connectiop;; (3), that we use three
times in Eq.(13), holds only in the asymptotic region

— 00,

Taking into account the initial conditio€;(t;) and ne-
glecting mutually compensating terms that occur in &@@)
after puttingB calculated from Eq(13) one obtains the for-
mula for time evolution of the clustering coefficient of a
given nodel
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FIG. 2. The local clustering coefficier@;(t) as a functiont; FIG. 3. The clustering coefficiel@ of a whole BA network as a
(averaged over Tonetworks. Note that thek; axis is nonlinear. function of the network sizé (averaged over 100 netwopks
m?(m+1)?[ [m+1 1 |[In(t)]?
(m—1) , am , ~m¥( [In(t)] 17
Ci(t)y=—————| (Int)*+ ———=(Int;)“|. T 4(m—-1 m | m+1 :
TN N (m-1)2 (m=1) !
(19
Let us note that ift;<<t or m>1, the local clustering For large ¢—) and denser>1) networks the above

coefficient does not depend on the node under consideratid@rmula approaches E¢6). The effect lets us deduce that the
and approache€;(t)=(m—1)(Int)%(8t), i.e., the formula  Structural correlationg17] characteristic for growing BA
(6) that gives the clustering coefficient of a random graphnetworks become less important in larger and denser net-
with a power-law degree distributiof#). Since one knows Works. The same was suggested in R6f. Figure 3 presents
how the node’s degree evolves in ti® one can also cal- the average clustering coefficient in BA networks as a func-
culate the formula foC;(k;). At Fig. 2 we present the for- tion of the network sizé¢ compared with the analytical for-
mula (15) (solid line) and corresponding numerical data Mula (17) (solid line) and numerical integration of E15)
(scatter plots The two kinds of scatter plots represent re- (Open squargsParadoxically, the approximate integration of
spectively: real datdlight gray circles and the same data Ed. (15 given by Eq.(17) better fits the real data then the
subjected to adjacent averaging smoothifgprk gray humerical integration of E(15).
circles. As before(see Fig. 1, we observe a significant dis-
agreement between the numerical data and the theory for
smallt; . We suspect that the effect has the same origin, i.e.,
the relations(2) and (3) that we use in our derivation work In summary, we applied a mean-field approach to study
well only in the asymptotic regiofh <t— oo, clustering effects in BaraaAlbert networks. We found that
To obtain the clustering coefficief@ of the whole net- local clustering coefficient€;(t) in BA networks are not
work the expressionil5) has to be averaged over all nodes completely homogeneous as suggested in R&f13. The
within a networkC = ! C;(t)dt; /t. We were not able to find observed small deviations @;(t) from the global network
an exact analytic form of this integral but we found its parameteiC(t) are especially visible for old nodes; {t).
asymptotic form in the limit of largé— o~ and densen>1  We derived a general formula for the clustering coefficient
BA networks. Taking advantage of the second mean valuéharacterizing the whole BA network. We found that in the
theorem for integratio15,16] the clustering coefficien€  limit of large (t—) and denser(>1) networks both the
may be written in the form local (C;) and the globalC) clustering coefficients approach
clustering coefficient derived for a random graph with a
power-law degree distributiori4). Our derivations were

CONCLUSIONS

_ m’(m+1)*| m +In((m+ 1)) — myt checked against numerical simulation of BA networks find-
4(m—-1) |(m+1) JEFmit ing a very good agreement.
2
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