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Universal scaling of distances in complex networks
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Universal scaling of distances between vertices of Erdős-Rényi random graphs, scale-free Barabási-
Albert models, science collaboration networks, biological networks, Internet Autonomous Systems
and public transport networks are observed. A mean distance between two nodes of degrees ki and
kj equals to 〈lij〉 = A − B log(kikj). The scaling is valid over several decades. A simple theory for
the appearance of this scaling is presented. Parameters A and B depend on the mean value of a
node degree 〈k〉nn calculated for the nearest neighbors and on network clustering coefficients.
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Recently, a lot of efforts have been put into investi-
gation of network systems, in order to recognize their
structures and emerging complex properties (for a re-
view see [1, 2, 3, 4]). The empirical analysis of many real
complex networks has revealed the presence of several
universal scaling laws. The scale-free behavior of degree
distributions P (k) ∼ k−γ [5] observed in a number of so-
cial, biological and technological systems is probably the
most amazing. Aside from that, many further scaling
laws have been found, such as a dependence of cluster-
ing coefficient on node degree in hierarchical networks
c(k) ∼ k−α [6], scaling of connection weight distribution
[7, 8], connection load distribution [9], load dependence
on degree [10] and others [11, 12, 13].

At the macro-scale one can describe a whole network
by a dependence of a mean distance between any pair of
nodes on the network size and in many real networks the
small-world effect is observed [14], i.e. the mean distance
l between nodes of such networks increases not faster
than logarithmically with their size N . In scale-free net-
works the small-world effect changes to ultra small-world
effect (l ∼ log log N) when λ < 3 [15, 16, 17, 18]. It was
also observed that if a network disorder is present, opti-
mal paths become much longer and the small-world effect
disappears [19]. The recent research on complex networks
is slowly shifting from problems of network topology to
directed and weighted networks [20, 21, 22], network dy-
namics [23], as well as to the issue of network efficiency
[24].

In the present paper we come back to networks geome-
try and analyze surprising empirical scaling that has not
been considered before. We think that our observations
can be important for understanding of network struc-
tures and for processes driving their evolution as well as
for constructing search algorithms in real web-like sys-
tems. We show that the mean distance between nodes
with degrees ki and kj is given by the following relation

〈lij〉 = A − B log(kikj). (1)

The above scaling law is shown to be correct not only for
network models but also for many real networks regard-

less of their degree distribution and correlation profiles.

Fig. 1 presents mean distance 〈lij〉 between pairs of
nodes i and j as a function of a product of their degrees
kikj in selected complex networks. Analyzed systems be-
long to very different classes ranging from generic mod-
els of random graphs and scale-free networks, through
natural systems such as food webs and metabolic net-
works to man-made like the Internet and public trans-
port networks. We include data for Erdős-Rényi ran-
dom graphs, Barabási-Albert evolving networks, biolog-
ical networks [25, 26, 27] (Silwood, Ythan, Yeast), social
networks [28, 29] (co-authorship groups Astro and Cond-

mat), Internet Autonomous Systems [30] and selected
networks for public transport in Polish cities [31, 32]
(Gorzów Wlkp.,  Lódź, Zielona Góra). One can see, that
the relation (1) is very well fulfilled over several decades
for all our data. Let us stress that the networks men-
tioned above display a wide variety of basic character-
istics. Among them there are both scale-free and single
scale networks, with either negligible or very high cluster-
ing coefficient, assortative [34], disassortative or uncorre-
lated. The only apparent common feature of all above
systems is the small-world effect. We have checked how-
ever that for the small-world Watts-Strogatz model [14],
the scaling (1) is nearly absent and it is visible only for
large rewiring probability, and only for larger degrees,
where nodes have many shortcuts.

Although the scaling (1) works well for distances aver-
aged over all pairs of nodes specified by a given product
kikj there can be large differences if one changes ki while
keeping kikj constant. The Fig. 2 presents the depen-
dence of average path length lij on ki, for a fixed product
kikj in the case of Astro network and for the Internet Au-
tonomous Systems in 1999. One can see that although
the Astro network is assortative [34] (short-range attrac-
tion), pairs of nodes with similar degrees are in aver-
age further away than different degree pairs (long-range
repulsion). For the disassortative network AS [34] the
behavior is opposite. For uncorrelated networks (Erdős-
Rényi, Barabási-Albert), the average path length is con-
stant if the product kikj is fixed [33].
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FIG. 1: Mean distance 〈lij〉 between pairs of nodes i and j as a function of a product of their degrees kikj . (a) Erdős-

Rényi random graphs: 〈k〉 = 8 and N = 1000 (squares) N = 10000 (circles), (b)Barabási-Albert networks: 〈k〉 = 8 and
N = 1000 (squares) N = 10000 (circles), (c) Biological networks: Silwood (squares), Yeast (triangles), Ythan (diamonds), (d)
Co-authorship networks: Astro (squares), Cond-mat (circles), (e) Internet Autonomous Systems: Year 1997 (squares), Year

1998 (circles) Year 1999 (triangles), Year 2001 (diamonds), (f) Public transport networks in Polish cities: Gorzów Wlkp.

(squares),  Lódź (triangles), Zielona Góra (circles) In (a), (b), (d) and (e) data are logarithmically binned with the power of
2, in case of (c) with the power of 1.25 and in case of (f) data are not binned.

To justify the relation (1) let us consider a simple ap-
proach that bases on a concept of branching trees explor-
ing the space of a random network. We need to estimate
the mean shortest path between a node i of degree ki

and a node j of degree kj . Let us notice that following
a random direction of a randomly chosen edge one ap-
proaches node j with a probability pj = kj/(2E), where
2E = N〈k〉 is a double number of links. It follows that in
average one needs Mj = 1/pj = 2E/kj of random trials
to arrive at the node j.

Now let us consider a branching process represented
by the tree Ti (Fig. 3) that starts at the node i where an
average branching factor is κ (all loops are neglected). If
a distance between the node i and the surface of the tree
equals to x then in average there are Ni = kiκ

x−1 nodes
at such a surface and there is the same number of links
ending at these nodes. It follows that in average the tree
Ti touches the node j when Ni = Mj i.e. when

kikjκ
x−1 = N〈k〉. (2)

Since the mean distance from the node i to the node j is

〈lij〉 = x thus we get the scaling relation (1) with

A = 1 +
log(N〈k〉)

log κ
and B =

1

log κ
. (3)

The result (3) is in agreement with the paper [35] where
the concept of generating functions for random graphs
has been used.

One has to take into account that in the above consid-
erations we have assumed there are no degree-degree cor-
relations, we have neglected all loops and we have treated
the branching level x as a continuum variable to fulfill the
relation (2). The last approximation can be improved if
one finds a probability distribution for P (lij) and a cor-
responding average value 〈lij〉. Such an approach has
been performed in our papers [17, 18] where we have ap-
plied the concept of hidden variables and have received
the same value of the parameter B and small corrections
to A.

The mean branching factor κ is a mean value over all
local branching factors and over all trees in the network.
In the first approximation it could be estimated as the
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FIG. 2: Dependence of average path length on ki, for fixed
kikj product. The lines connecting the symbols are there for
clarity. The bars show point weight, meaning relative num-
bers of pairs ij. The horizontal lines are weighted averages
over ki, and are just average path lengths for given kikj . The
top shows data for the Internet Autonomous Systems, while
bottom for Astro co-authorship network. Note: The very
small shifts on ki axis between data for different kikj are ar-
tificially introduced to make the weight bars not overlap.
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FIG. 3: Tree formed by a random process, starting from the
node i and approaching the node j.

mean arithmetic value of a nearest neighbor degree less
one (incoming edge): κ = 〈k〉nn − 1. Such a mean value
is however not exact because local branching factors in
every tree are multiplied one by another in (2). The
corrected mean value of κ should be taken as an arith-
metic mean value over all geometric values from different
trees, what is very difficult to perform numerically. We
calculate arithmetic mean branching factor over nearest

neighborhood of every node m, i.e. κ(m) = 〈k〉
(m)
nn − 1,

and then average it geometrically over all nodes m, i.e.
κ = 〈κ(m)〉m. Although our approach is not exact, it
leads to a good agreement between coefficients Ae, Be

taken from real networks (see Table I) and A, B calcu-
lated from our model.

The influence of loops of the length three on the re-
lation (1) can be estimated as follows. Let us assume
that in the branching process forming the tree Ti two
nodes from the nearest neighborhood of the node i are
directly linked (the dashed line at Fig.3). In fact such
a situation can occur at any point of the branching tree
Ti. Since such links are useless for further network explo-
ration by the tree Ti thus an effective contribution from
both connected nodes to the mean branching factor of
the tree Ti is decreased. Assuming that clustering coef-
ficients of every node are the same, the corrected factor
for the branching process equals to κc = κ − cκ where c
is the network clustering coefficient. This equation is not
valid for the branching process around the node i where
κ′

i = κ − c(ki − 1). A similar situation arises around the
node j. Replacing ki and kj with 〈k〉 in κ′

i and κ′

j one
gets

kikj [κ(1 − c′)]2[κ(1 − c)]x−3 = N〈k〉, (4)

where c′ = c(〈k〉 − 1)/κ. It follows that instead of (3) we
have

A′ = 3+
log(N〈k〉) − 2 log[κ(1 − c′)]

log[κ(1 − c)]
, B′ =

1

log[κ(1 − c)]
.

(5)
The Table I contains a comparison between the exper-

imental data (Fig. 1) and theoretical predictions given
by Eq. (3) and (5). One can observe that the range
of parameters A and B for different networks is very
broad. Our approximate approach fits very well to ran-
dom Erdős–Rényi graphs and BA models and is fairly
good for co-authorship and biological networks as well as
for the Internet Autonomous System and public trans-
port network in Zielona Góra while for two other trans-
port systems it leads to larger errors. Corrections due
to clustering effects give a better fit for the coefficient
A′, while for some networks the coefficient B is closer
to experimental value Be than B′. The good agreement
between theory based on random networks and empirical
data suggests that the considered real networks exhibit
a large level of randomness.

In conclusions we have observed universal path length
scaling for different classes of real networks and models.
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network N 〈k〉 c Ae A A′ Be B B′

Erdős-Rényi 1000 8.00 0.007 5.43 5.46 5.48 1.017 1.143 1.147
Erdős-Rényi 10000 8.00 0.001 6.77 6.60 6.61 1.136 1.143 1.143

Barabási-Albert 1000 8.00 0.038 4.54 4.24 4.27 0.813 0.830 0.842
Barabási-Albert 10000 8.00 0.007 5.17 4.81 4.81 0.778 0.777 0.779

Astro 13986 25.56 0.609 5.24 4.30 4.98 0.707 0.595 0.786
Cond-mat 17013 9.46 0.604 5.90 5.09 6.38 0.908 0.786 1.150
Silwood 153 4.77 0.142 4.22 3.69 3.78 0.955 0.941 1.004
Yeast 1846 2.39 0.068 7.53 6.66 6.87 1.406 1.552 1.629
Ythan 135 8.83 0.216 3.39 3.35 3.45 0.649 0.765 0.832

AS 1997 3015 3.42 0.182 3.99 3.39 3.42 0.562 0.596 0.629
AS 1998 4180 3.72 0.250 4.08 3.41 3.45 0.555 0.575 0.620
AS 1999 5861 3.86 0.250 4.03 3.35 3.38 0.532 0.540 0.579
AS 2001 10515 4.08 0.289 3.96 3.23 3.25 0.471 0.481 0.518

Gorzów Wlkp. 269 2.48 0.082 24.36 16.06 19.76 12.270 5.333 6.651
 Lódź 1023 2.83 0.065 24.01 11.67 12.70 8.621 3.084 3.389

Zielona Góra 312 2.98 0.067 10.03 8.96 9.63 3.908 2.682 2.917

TABLE I: Comparison between experimental and theoretical data. Astro and Cond-mat are co-authorship networks, Silwood,
Yeast and Ythan are biological networks and AS stands for the Internet Autonomous Systems with number meaning the year
data were gathered, Gorzów Wlkp.,  Lódź and Zielona Góra are public transport networks in corresponding Polish cities. N is
the number of nodes, 〈k〉 - mean degree value, c - clustering coefficient. Ae and Be mean experimental values (Fig. 1) whereas
A and B are given by (3), A’ and B’ by (5).

The mean distance between nodes of degrees ki and kj

is a linear function of log(kikj). The scaling holds over
many decades regardless of network degree distributions,
correlations and clustering. A simple model of random
tree exploring the network explains such a behavior and
leads to a good agreement with experimental data. We
expect that the observed scaling law is universal for many
complex networks, with applicability reaching far beyond
the quoted examples.
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