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Influence of stable Floquet exponents on time-delayed feedback control
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The performance of time-delayed feedback control is studied by linear stability analysis. Analytical approxi-
mations for the resulting eigenvalue spectrum are proposed. Our investigations demonstrate that eigenbranches
that develop from the stable Lyapunov exponents of the free system also have a strong influence on the control
properties, either by hybridization or by a crossing of branches which interchanges the role of the leading
eigenvalue. Our findings are confirmed by numerical analysis of two particular examples, the Toda and the
Rössler models. More important is the verification by actual electronic circuit experiments. Here, the observed
reduction of control domains can be attributed to these additional eigenvalue branches. The investigations lead
to a thorough analytical understanding of the stability properties in time-delayed feedback systems.
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I. INTRODUCTION

Control of chaos has become an intense field of rese
within this decade, and therefore renewed interest in dif
ent control methods has been stimulated. In that con
time-delayed feedback schemes have been rediscovere@1#
since they are easy to apply in complex real world syste
Without performing complicated data analysis, the measu
ment of plain output signals is sufficient to generate onl
an appropriate control force from a time-delayed differen
The scheme applies to situations where one wants to stab
formerly unstable temporal periodic states. Classical appl
tions concern demonstrative experiments like mechanica
cillators @2# or electronic circuits@3#, lasers@4#, and dis-
charge gas systems@5#. Meanwhile, the method has bee
used in quite diverse experimental contexts. We men
only spin wave dynamics beyond the Suhl instability, whi
even to date lacks adequate theoretical modeling, but ti
delayed feedback control has been applied successfully@6#.

Apart from this striking experimental success, an anal
cal understanding of the control method has been develo
only recently. In that context it was pointed out that torsio
i.e., the finite imaginary part in the Floquet exponent, is
necessary ingredient for the method to work at all@7,8#. Fur-
thermore, schemes for the adaptation of the delay ti
which has to be adjusted to the period of the orbit, have b
developed @9,10#, and the limitations caused by th
Lyapunov exponent of the orbit have been analyzed in de
@11#. Even the limiting influence of control loop latenc
which is well known in the context of ordinary contro
theory, has been stressed for time-delayed feedback sch
@12#. Extensions of the simple scheme employing multip
delays@13#, symmetry properties of the orbit under consi
eration @14#, and time-dependent control amplitudes@15#
have been discussed to overcome several of the limitation
the method just mentioned. Review articles dealing with s
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eral special aspects can be found in the literature~cf. @16#!.
For theoretical analysis of the control performance o

usually resorts to linear stability analysis or formally equiv
lent approaches. Hence the control properties are gove
by the eigenvalue spectrum of the linearized equations
motion. Here we are going to deal with the structure of t
whole spectrum, try to clarify how different eigenvalu
branches interact with each other, and in particular dem
strate how branches that emerge from the stable exponen
the free system may influence the control properties. To k
the presentation self-contained and in order to set up
essential notation, we will first recall the main ideas of su
theoretical approaches. Section III will be devoted to t
study of eigenvalue spectra in different model equations
ing numerical simulations. It will become apparent that ev
low lying eigenvalue branches may considerably influen
the control performance. These aspects are illustrated in e
tronic circuit experiments in Sec. IV. Several appendixes
concerned with technical details, which in principle are n
new, but the application to time-delayed feedback contro
sometimes difficult to find in the literature.

II. THEORETICAL ANALYSIS AND ANALYTICAL
RESULTS

Time-delayed feedback schemes were invented for c
trol of experimental systems where only a limited number
signals is accessible and no complicated data processin
possible. Typical examples are optical and magnetic exp
ments on ultrafast time scales or chemical and biolog
systems which are sensitive to environmental changes
typical setup which covers all these cases is displayed
Fig. 1.

The equation of motion for the internal degrees of fre
dom which follows from the general setup reads

ẋ~ t !5f„x~ t !,KF~ t !…, ~1!

where the simplest recipe for the control force consists o
plain time-delayed difference of a single scalar signal,
5045 ©2000 The American Physical Society
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5046 PRE 61WOLFRAM JUSTet al.
F~ t !5g@x~ t !#2g@x~ t2t!#. ~2!

Such a scheme is suitable to control an unstable peri
orbit j(t)5j(t1T) of the free system,K50, provided the
delay timet is adjusted properly@1#. In what follows we
chooset5T, so that the force finally vanishes when contr
is achieved.

The control performance is analyzed by considering
neighborhood of the periodic orbit and performing a line
stability analysis with the usual exponential ansatz,

x~ t !2j~ t !.e(L1 iV)tQ~ t !, Q~ t !5Q~ t1t!. ~3!

Expanding the full equations of motion~1! and ~2! one ob-
tains an eigenvalue equation for the Floquet exponentL
1 iV and the eigenfunctionsQ(t),

~L1 iV!Q~ t !1Q̇~ t !5M @K~12e2(L1 iV)t!,t#Q~ t !.
~4!

Here the abbreviation on the right-hand side,1

M @k,t#ªD1f„j~ t !,0…1kd2f„j~ t !,0…^ Dg@j~ t !#, ~5!

contains all the details of the internal dynamics and the c
pling of the control force. Although we started from
differential-difference system we ended up with the us
Floquet-like problem~4!. The price one has to pay is that th
right hand side depends on the exponent itself. There e
fancy procedures for a numerical evaluation~cf. @17#!, pro-
vided one has access to the explicit form of the equation
motion. But even without such information further simplifi
cation can be achieved. The matrix~5! itself has Floquet
exponents@cf. Eq. ~A1! for a formal definition# which de-
pend on the argumentk. We will denote these quantities b
G (n)@k#, where the superscriptn ranging between 1 and th
dimension of the system~1! enumerates the differen
branches. Then Eq.~4! tells us that we recover the exponen
of the controlled system if the correct value for the argum
is inserted,

L1 iV5G (n)@K~12e2(L1 iV)t!#. ~6!

At the moment we do not know the function on the rig
hand side explicitly apart from the fact that its value atk
50 reproduces the Floquet exponents of the free orbit,

1Dk(dk) denote the vector~scalar! derivatives with respect to the
kth argument.

FIG. 1. Diagrammatic view of a time-delayed feedback cont
scheme.x(t) denotes the internal degrees of freedom of the non
ear system,s(t) the measured signal, andh(t) external parameters
or driving fields. The control loop is displayed in gray.
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G (n)@0#5l (n)1 iv (n). ~7!

A simple but often quite useful approximation replac
G (n)@k# by an affine function@cf. Eq. ~A2!#. The reader may
consult Appendix A, where several motivations for such
step are summarized.

In what follows we will concentrate on special types
free orbits, namely, those that flip their neighborhood dur
one turn. To be more definite we require that the Floq
multipliers are real so that the imaginary part of the Floq
exponent either vanishes or obeysv (n)5p/t. In the latter
case2 the linear approximation just mentioned simplifies fu
ther and Eq.~6! reads in dimensionless units

Lt1 iDVt5l (n)t2~2txR
(n)!K~11e2Lt2 iDVt!. ~8!

Here DV5V2p/t denotes the deviation of the frequenc
due to control, and apart from the free Lyapunov expon
l (n)t the only remaining system-dependent free param
(2txR

(n)) captures all the details of the system. Of cour
the latter coefficient may differ for the different Floqu
branches of the matrix~5!, but in each case it just rescale
the control amplitude. The transcendental equation~8! can be
discussed analytically~cf. Appendix B! and the final result
for the Floquet exponents of the system subjected to con
is shown in Fig. 2.

One branch emanating from the exponent of the free o
collides at a critical control amplitude with a second re
multiplier coming from minus infinity, and gives rise to
complex conjugated pair. For the real part of the largest
ponent a typical butterfly shaped curve results, which ev
tually may lead to a finite control interval. There appears
addition an infinite number of complex valued Floquet exp
nents, which have smaller real parts and which tend to mi
infinity in the limit of vanishing control amplitude. No cross
ing of the Floquet branches occurs within our analytical e
pression~8!. An increase of the value ofl (n)t essentially
shifts the whole set of curves upward.

The scenario displayed in Fig. 2 is generated by each
the Floquet exponents of the free system, which have b
labeled by the superscriptn. The actual control domain is
determined by the intersection of all these control interv
and a considerable reduction might result. Here we are

2If v (n)50 and l (n).0 then, within the linear approximation
there always appears an eigenvalue with positive real part~cf. @8#!.
The same conclusion holds if the multiplier exp(t G(n)@k#) is a real
function.

l
-

FIG. 2. Floquet exponents computed from Eq.~8! for l (n)t
51. Solid line: largest solution, dotted line: second real multipl
(DV50), gray: nondominant complex exponents.
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ticularly interested in the question whether the branc
originating from the initially stable exponents can influen
the control performance. Such features cannot be succ
fully dealt with on the level of the linear approximation~8!
since apart from other limitations such equations do not c
tain any coupling between different eigenspaces. Hence
have to develop some improvement.

Expression~8! is an approximation for the full spectrum
of the system under consideration. If one is interested in
improvement several constraints have to be observed.
of all, it is quite well known that the sum of all Floque
exponents is nothing else but the average of the trace o
matrix ~5!. Then

(
n

G (n)@k# 5
mod 2p i /t1

tE0

t

Tr D1f„j~ t !,0…dt

1k
1

tE0

t

Dg@j~ t !#d2f„j~ t !,0…dt ~9!

implies that the sum of the exponents is strictly linear ink.
Hence

G (n)@k#5l (n)1 iv (n)1~xR
(n)1 ix I

(n)!k1D (n)@k#,
~10!

(
n

D (n)@k#50,

is an exact expression, whereD (n)@k# denotes the highe
order nonlinear terms. It is already obvious from Eq.~4! that
such correction terms are intimately related to the existe
of different Floquet branches, since Eq.~8! becomes an exac
expression for one-dimensional systems. As long as the
trol force is derived from a single scalar signal, at most o
of the exponents increases linearly for large modulusuku ~cf.
Appendix A! so that

D (n)@k# .
uku→`

2~xR
(n)1 ix I

(n)!k ~nÞnmax! ~11!

holds. Finally, the correctionsD (n)@k# may be complex func-
tions. However, like eigenvalues of matrices Floquet mu
pliers either are real or appear in complex conjugated pa
The first possibility corresponds to an imaginary part of 0
p/t in the corresponding exponent whereas the second
implies frequencies that appear with opposite sign, e
v (1)52v (2)Þ0,p/t. If we specialize to free orbits with rea
multipliers, i.e.,v (n)50 or p/t, then, because of structura
stability, the imaginary part does not change by small per
bation. Hence, a real first order coefficient results,x I

(n)50,
andD (n)@k# is a real function at least for small argument.
summary, we stress that any improvement of Eq.~8! by non-
linear termsD (n)@k# has to obey the constraints just me
tioned, but no simple extension containing only a few para
eters is obvious at the moment.

III. MODELS AND NUMERICAL SIMULATIONS

We begin to test some of our theoretical results of
preceding section using numerical analysis of model s
tems. Such an approach might also help to improve sim
analytical approximations like Eq.~8!. There is of course an
s
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endless variety of models for performing numerical analys
Here we concentrate on two simple but common syste
namely, the Toda and the Ro¨ssler equations. We employ
particular coupling of the control force and will fix most o
the parameter values. We do not intend to give a comp
overview of all control features of these models but focus
particular aspects of the stability problem.

A. Toda equation

The Toda oscillator represents a simple two-dimensio
nonautonomous model system exhibiting chaos in certain
rameter ranges. Its equations of motion read

ẋ15x2 ,
~12!

ẋ252mx22a~ex121!1A sin~2pt !2K@x2~ t !2x2~ t2t!#.

Here the control term has already been included where
force was derived from the velocity coordinate. We will co
sider fixed parameter valuesm50.8,a525, and study con-
trol properties for a few periodic orbits with integer period

As our first example let us consider the period-4 orbit
A584. Floquet exponents are computed from the lineari
equation of motion@cf. Eq. ~4!# and the exponent with maxi
mal real part is displayed in Fig. 3. One obtains the typi
butterfly shaped curve for the real part already known fr
the simple analytical expression~8!. In addition, lower and
upper critical control amplitudes are observed, so that at le
a qualitative agreement with the results of the preceding s
tion is visible ~cf. Fig. 2!.

To check for quantitative coincidence we have calcula
the exponentsG (1,2)@k# @cf. Eq.~A1!# and the result is shown
in Fig. 4 for real values of the argument. In order to get
idea of whichk values are relevant for our spectrum, th
figure displays also the location of the Floquet expone
L1 iV in the complexk plane according to the formulak
5K@12exp(2Lt2iVt)#.

A linear increase of one branch for large modulus is o
served in accordance with the asymptotic behavior de
oped in Appendix A. The saturation of the other branch do
not appear on the intermediate scale that is visible here
pronounced hybridizationlike structure is visible near the o
gin. As a consequence a considerable curvature results
the linear approximation~A2! on which the analytical ex-
pression~8! was based is only correct to some limited exte
For a better quantitative agreement one has to take this s

FIG. 3. Real part of the largest Floquet exponent and freque
deviation for the period-4 orbit of the Toda model~12! in depen-
dence on the control amplitude~solid lines!. The inset shows an
enlargement of the control interval. Dotted lines display results
cording to the analytical expressions~13! and~6!, but partly hidden
since the coincidence is almost within the resolution of the figu
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ture into account. In fact, one needs the full analytical str
ture of the expressionG (n)@k# in the complex plane, since
even small deviations might result in spurious solutions
the eigenvalue equation. As an educated guess that has
heuristic theoretical support~cf. Appendix C! we suggest the
expression

tG (1,2)@k#2 ip5a1ak6~c1gk1Ab21sk1b2k2!,
~13!

where the term within the parentheses may be considere
the nonlinear correctiontD (1,2)@k#. A fit to the data in Fig. 4
yields3 a521.6 anda522, which coincide of course with
the exact analytical values according to the sum rule~9!. The
remaining parameters are obtained asc51.401,g
50.000,b52.385,b51.381, ands53.046. Here, devia-
tions of the fit from the numerically obtained values
tG (1/2)@k# are smaller than 0.5% and are not visible with
the resolution of Fig. 4. In addition, the Floquet exponents
the controlled system,L1 iV, are also well reproduced~cf.
Fig. 3!. We stress that in the present case the lower eig
value influences the spectrum due to the hybridization
mentioned. However, no crossing of Floquet branches for
maximal exponent occurs.

The situation in the preceding paragraph seems to be
typical for the Toda model, since often a crossing of Floq
branches is observed. In order to demonstrate this featur
refer to the period-1 orbit atA5105. Floquet exponents in
dependence on the control amplitude are displayed in Fig

One clearly recognizes that the branch emanating fr
the second stable exponent comes into play. Both bran
display the well known frequency splitting transition but
nally the former lower branch dominates the spectrum. T
kind of behavior has already been observed for exten
time-delayed feedback control@18#, but no explanation has
been given. Further, we note that in the case considere
upper critical control amplitude is obtained since the real p
stays negative and the orbit remains linearly stable, at l
for K values up toK520. A fit for the analytical expression
~13! yields a520.4,a520.5,c50.4468,g50.0384,b
51.343,b523.176, ands50.000. Again, the first two pa
rameters coincide with their exact analytical values. The

3Fits to the data ofG (1)@k#1G (2)@k# andG (1)@k#2G (2)@k# have
been performed withGNUPLOT 3.7.

FIG. 4. Left: Dependence of the exponentstG (1,2)@k# on real
valued argument. Right: Location of the Floquet exponents~cf. Fig.
3! in the complexk plane~solid line!. Dotted lines are results from
the analytical expression~13!, but the coincidence is almost withi
the resolution of the figure.
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curacy of the fit forG (n)@k# is of the order of 5% and even
the Floquet exponents are reasonably well reproduced~cf.
Fig. 5!.

B. Rössler equation

As an example for an autonomous model we investig
the Rössler equation

ẋ152x22x32«K@x12x1~ t2t!#,

ẋ25x11ax22K@x22x2~ t2t!#, ~14!

ẋ35b1x1x32cx32«K@x32x3~ t2t!#,

with parameter settingsa50.82,b50.55, andc52.2. For
the coupling of the control force we have introduced a mo
fied scheme which includes an additional parameter«. For
«50 conventional feedback control with a single sca
quantity is recovered. For«51 we obtain a coupling via the
identity matrix. In such a case the simple expression~8! be-
comes exact~cf. Appendix A! and by changing the paramete
« deviations from the simple linear analytical approximati
can be investigated systematically. As previously, a f
branches of the Floquet spectrum for the period-1 orbit h
been calculated numerically at different values of«. They
are shown in Fig. 6.

For «51, as already mentioned, the whole spectrum
described exactly by the simple analytical expression~8! ~cf.
Fig. 2!. In order to understand which features change fo«
,1, one has to concentrate on the real multipliers, wh
tend to minus infinity in the limit of vanishing control am
plitude. For«,1 these branches connect to each other, g
ing rise to a reversed third frequency splitting point that co
nects the formerly independent branches. On lowering«
further, two of the frequency splitting points collide at«
'0.87 giving rise to a cusp singularity. As a consequen
the real and the complex branches become disconnected
remaining frequency splitting point in the upper part of t
spectrum is now caused by real branches that connect to
nontrivial Lyapunov exponents of the free system, in contr
to the situation at«51. Hence the branches originating fro
the uncontrolled exponents are no longer independent fo«
,0.87 as Eq.~8! would imply. Therefore, the hybridization
not only leads to quantitative deviations from the line
theory, but changes the structure of the spectrum comple

FIG. 5. Real part of two Floquet branches and frequency de
tion for the period-1 orbit of the Toda model~12! in dependence on
the control amplitude~solid lines!. Thick ~thin! line displays the
branch connecting to the larger~smaller! Lyapunov exponent of the
free system. Dotted lines display results according to the analy
expressions~13! and ~6!. The inset shows an enlargement near
the control threshold.
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FIG. 6. Floquet exponents of the period-1 o
bit of the Rössler system~14! in dependence on
the control amplitude. Thick solid~dotted! line:
branch originating from the free Lyapunov expo
nent l (1)t50.808(l (3)t522.026), dashed line:
complex branch. The Goldstone mode connec
to l (2)t50 is not displayed.
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so that the simple expression~8! no longer yields a good
quantitative description. Nevertheless, the largest bran
which actually determines the stability of the orbit, preserv
the typical butterfly shape.

To gain some more insight we have again calculated
merically the exponentsG (1,2,3)(k) for «50. The results are
displayed in Fig. 7. The structure looks quite intricate, and
particular collisions of eigenvalues in the vicinity ofk50
are observed. Since now three branches are involved, in
trast to the nonautonomous Toda equation, one cannot ex
that expression~13! yields an overall quantitatively satisfac
tory description since the hybridization in Eq.~13! was based
on two branches only. Although an extension to mo
branches is straightforward, it might become meaningl
since the number of free parameters increases. Neverthe
the linear increase ofG (3)@k# and the saturation ofG (1,2)@k#
are again in accordance with the general consideration
Appendix A.

The complexity of the studied case of the Ro¨ssler system
indicates that the fine structure of the Floquet spectrum
higher dimensional systems is in general quite complica

FIG. 7. Dependence of the exponentstG (1,2,3)@k# on real valued
argument for the period-1 orbit of the Ro¨ssler system for«50.
tG (1)@k# ~solid! connects to the free exponentl (1)t
50.808,tG (3)@k# ~dotted! to l (3)t522.026, and tG (2)@k#
~dashed! to the Goldstone mode withl (2)t50. The inset shows the
bifurcation structure close tok50.
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and difficult to describe quantitatively by analytical method
Surely such complicated spectra may also be detected in
ferent models. One can conclude that the type of spect
depends strongly on the specific properties of the system
the coupling of the control. However, the main features
well captured qualitatively even by simple expressions l
Eq. ~8!.

IV. ELECTRONIC CIRCUIT EXPERIMENTS

So far our investigations have shown that the princi
aspects of the Floquet spectrum are well understood. E
the simple theory captures basic features of the control
formance and deviations can be attributed to nonlinear c
tributions of the characteristic equation~6!. One can even
model these terms successfully in special cases. Henc
seems promising to continue our investigations with real
perimental systems.

In almost all our experiments on chaos control by tim
delayed feedback we have observed the existence of se
Floquet exponents, at least for high control amplitude.
most cases the control regime was determined solely by
branch that connects to the unstable free Lyapunov expon
A second or even several exponents appear in the spec
of the control signal for highK values but often do not cros
the first one. In a few cases, such a crossing appeared in
real parts, leading to a reduced control domain. Here
report on these phenomena in experiments on a nonlin
diode resonator. The circuit~cf. Fig. 8!, consisting of a diode
~1N4005!, an inductorL, and a resistorR, was sinusoidally
driven at fixed frequencyf A with amplitudeUA . The control
device allows application of a control force of the for
F(t)5K@U(t)2U(t2t)#, where the delay was set accor
ing to the driving frequency. Our feedback scheme consis
of coupling the voltage at the resistor via the control dev
to the driving force.

A. Quasilinear behavior of Floquet spectra

Our first set of parametersL5760 mH, R536 V, f A
5800 kHz, andUA51.1 V guaranteed a chaotic attract
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that emerged from a period-doubling cascade on variatio
the driving amplitude. Above all, this sequence of bifurc
tions left behind an unstable period-1 orbit with frequen
v5p/T in the Floquet exponent, which was generated in
first period-doubling bifurcation. Applying time-delaye
feedback it is possible to stabilize this orbit for control a
plitudesK between 12.9 and 81.7. We want to demonstr
how the Floquet exponent with the largest real part, de
mining the stability of the orbit, changes on variation of t
control amplitude.

There are several possibilities to determine Floquet ex
nents of a periodic orbit from experiment. One would be
stabilize the orbit by time-delayed feedback and apply
additional small harmonic force. By sweeping its frequen
and measuring the response of the system at every parti
frequency point, one obtains the power spectrum of the
ear response function. Although its detailed form is in ge
eral quite complicated, the least stable eigenvalues are
naled by Lorentzian lines ~cf. Appendix D!. The
corresponding spectra that have been measured in the co
interval are displayed in Fig. 9.

From the position and width of the lines it is possible
determine the Floquet exponents@cf. Eq. ~D10!#. In particu-
lar, the dominant line gives the Floquet exponent with larg
real part ~cf. Fig. 10!. For comparison with the analytica
result ~8! we optimized the fit with respect to the frequen
splitting point, obtaininglt51.07 and (2txR)50.036. The
quantitative coincidence with this linear model is within
few percent. At first glance one does not observe sev
Floquet branches in the spectra~cf. Fig. 9!, but realizes
strange non-Lorentzian peak forms for high control amp
tude. On a closer look, this can be attributed to the existe
of several lines within a small frequency band~cf. Fig. 11!.

Unfortunately it is not possible to extract these additio
Floquet branches for a widerK range from these measure

FIG. 8. Experimental setup of the nonlinear diode resona
with control device.

FIG. 9. Network analyzer spectra of the control signal for t
stabilized but disturbed orbit.
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ments, especially since the number of ‘‘visible’’ exponen
increases with the applied control amplitude. Therefore, o
the exponent with largest real part is plotted in Fig. 10.
conclude, this is one experimental example where sev
Floquet exponents appear in the spectrum of the control
nal for highK values but do not cross the first one. Here, t
stability of the controlled orbit is solely determined by th
exponent that connects to the unstable free Lyapunov ex
nent.

B. Reduced control domains due to Floquet branch crossing

As a second example we usedL5517 mH, R5124V,
and f A5813 kHz. Although the method described abo
works quite accurately within the control interval, it does n
allow Floquet exponents to be obtained outside the stab
domain. Therefore, in contrast to the former experimen
here we utilized a different method for extracting the Floqu
exponents of the system. We determined the real part
analyzing the exponential decrease~increase! from transients

r

FIG. 10. Floquet branch with largest real part for the period
orbit of the nonlinear diode resonator in dependence on the con
amplitude. Solid lines display fits according to the analytical res
~8! with lt51.07 and (2txR)50.036.

FIG. 11. Extended view of the network analyzer spectrum
K560 ~cf. Fig. 9!. In addition to the experimental data, a fit wit
three Lorentzian lines~for clarity moved downward! and their sum
is depicted.
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of the control signal when switching the control on~to a K
value outside the control interval!. The imaginary part was
obtained from the frequency spectrum of this transient. S
a procedure allows the Floquet exponents to be determ
in the wholeK range, in particular, the Lyapunov expone
of the free orbit,l, for K50. By changing the driving am
plitude UA between 0.7 and 3.2 V unstable period-1 orb
with different positive free Lyapunov exponents could
realized. Sweeping the control amplitudeK, we obtained the
lower and the upper border of the control interval~cf. Fig.
12!.

We have compared this control domain with the analyti
prediction according to Eq.~8! ~cf. @11#!. Here the fit of the
lower control threshold can be achieved with a single va
of the scaling parameter (2txR), which indicates that the
dependence of this quantity on the system parameters in
parameter interval under consideration is very weak. For
upper control threshold a considerable reduction of the c
trol domain is observed and control is no longer possible
lt.1.1, in contrast to the predictions of the linear expr
sion ~8!. Along the left border of the domain the frequen
attains a constant value,DV50, whereas on the right borde
it varies continuously. Since at the tip of the region the f
quency develops a finite jump, we conclude that the cutof
the region is caused by a different Floquet branch.

We demonstrate this phenomenon by Floquet spectra
tained at parameter valuesL5470 mH, R5127 V, f A
5813 kHz, andUA51 V. As can be seen clearly from ou
experimental results~cf. Fig. 13!, the control interval is not
determined only by the first Floquet exponent. A crossing
the real part occurs, leading to a new dominant Floq
branch. As a consequence a considerable reduction of
control interval takes place.

V. CONCLUSION

Linear stability analysis is a useful tool to study the p
formance of time-delayed feedback control. The correspo
ing characteristic equation can be written down formally a
may be solved by numerical methods if the equations
motion are known. But analytical evaluation calls for som
approximation. The simplest version, i.e., Eq.~8!, already
captures essential qualitative features, e.g., the bifurcat
that limit the control interval. However, such an express

FIG. 12. Control domain for the diode resonator in the plane
control amplitude and free Lyapunov exponent: circles, low
threshold~flip bifurcation!; triangles, upper threshold~Hopf bifur-
cation!. Solid line and light gray shaded region correspond to
analytical result Eq.~8! with (2txR)50.088.
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does not contain all properties of the spectrum. In particu
the interaction of different eigenvalue branches, which ori
nate from different exponents of the free system, is not pr
erly taken into account, so that at least quantitative dev
tions occur.

The influence of these additional branches, which
stable in the free system, is twofold. On the one hand,
bridization between the different branches may occur so
the right hand side of the characteristic equation~6! deviates
considerably from the linear form that has been employed
the approximation~8!. A more complicated expression ha
been adopted@cf. Eq. ~13!#, which yields good quantitative
coincidence with numerical simulations of the Toda equ
tion. The price one has to pay is an increase of the numbe
free parameters that have to be fitted to numerical data.
the other hand, eigenvalue branches may cross and the e
value with largest real part, which determines the stabil
may change. Then, the branch that originates from the st
exponent of the free system may enter the business, as
emplified by the numerical study of the Toda equation.
particular, such crossings have been identified in the e
tronic circuit experiment. As a consequence a considera
reduction in the control domain and a reduction of access
periodic orbits results.

The simple analytical expression~8! becomes exact for a
mean field type coupling of the control force. With the i
vestigation of the Ro¨ssler system we have studied systema
cally deviations from such a situation. Finally, the differe
eigenvalue branches become intermingled in a cusp po
and the whole structure of the spectrum changes qualitati
if the case of the original Pyragas scheme is considered

So far we have seen that the linear stability properties
time-delayed feedback control can be modeled even on
lytical grounds to a certain extent. For a full understanding
the control performance, there are, however, several asp
left, and we mention three of them which in our opinion a
the major challenge for future research. First, we have
ready seen on analytical as well as on numerical grounds
for large control amplitudes the real part of the Floquet e

f
r

e

FIG. 13. Floquet branch with largest real part and frequen
deviation for the period-1 orbit of the nonlinear diode resonator
dependence on the control amplitude: open symbols, branch
necting to the free unstable Lyapunov exponent; full symbo
crossing complex branch.
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5052 PRE 61WOLFRAM JUSTet al.
ponents tends toward zero, i.e., exponents accumulate a
stability threshold. Even if the real part stays negative so
the orbit is formally stable, small perturbations, e.g., no
may render the orbit unstable and strongly influence the
per critical control threshold. In particular, in experimen
systems such a weak stability of the orbit can be destro
by the presence of imperfections. Hence, it is of utmost
portance to study the stability of the spectrum against per
bations, a problem that plays a major role in the contex
strongly non-normal operators.

Second, there exists at least one variant of the con
algorithm which we believe deserves a closer look. Our
vestigations indicate that the number of measured sig
from which control forces are derived plays a major role
the structure of the eigenvalue problem and hence in
control performance. If several quantities are employed
derive control forces, not only do different control amp
tudes enter the business but there appears a wider ran
possibilities to couple these forces to the system under c
sideration. Hence, one may look for some optimized c
pling scheme, a problem that is well established in the c
text of control theory. However, to the best of our knowled
only preliminary results exist for time-delayed feedback co
trol of periodic states~cf. @17#!.

Third, the domain of attraction of the stabilized orb
plays a major role in applications. Surely such a property
beyond the linear stability analysis, and even in ordin
differential equations the estimation of the domain of attr
tion is among the most difficult tasks. Thus, one might e
pect that the corresponding problem in time-delay syste
will be even harder to tackle. However, the size of the d
main of attraction is expected to be of equal importance w
the stability itself.
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APPENDIX A: ASYMPTOTIC EXPANSION
OF THE CHARACTERISTIC EQUATION

In order to evaluate the characteristic equation~6! explic-
itly one needs an expression for the Floquet exponents o
matrix ~5!. The latter are defined by the eigenvalue probl

G (n)@k#Pk
(n)~ t !1Ṗk

(n)~ t !5M @k,t#Pk
(n)~ t !,

~A1!
Pk

(n)~ t !5Pk
(n)~ t1t!,

where Pk
(n) denotes the corresponding right eigenfunctio

We have already stressed in the main text that a useful
proximation is given by an affine expression,

G (n)@k#5l (n)1 iv (n)1~xR
(n)1 ix I

(n)!k. ~A2!
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Here the constant term is just the Floquet exponent of
free system by virtue of Eqs.~5! and ~A1!.

The validity of Eq.~A2! is not obvious and calls for sev
eral comments. The simplest argument consists in a Ta
series expansion. If we choose some arbitrary base poink0
and neglect all contributions of second and higher order,
obtain

G (n)@k#5G (n)@k0#2
dG (n)

dk0
k01

dG (n)

dk0
k1O@~k2k0!2#.

~A3!

The constant term yields at least an estimate for the
Floquet exponent@cf. Eq. ~7!# and Eq. ~A2! constitutes a
locally correct asymptotic expression.

Nevertheless, one may consider under what conditi
higher order terms can be neglected. We will show that
~A2! becomes exact for a particular type of coupling of t
control force. Suppose that we can replace the control
trix, i.e., the second term in the definition~5! by a multiple of
the unity matrix,a1. Such a situation happens if one coupl
each component of the state vector to one of the equation
motion in a diagonal way with strengtha ~cf. @6#!. Such a
coupling may be called mean field like. Then the eigenva
problem~A1! simplifies to

†G (n)@k#2ak‡Pk
(n)~ t !1Ṗk

(n)~ t !5D1f„j~ t !,0…Pk
(n)~ t !,

~A4!

taking the definition~5! into account. But Eq.~A4! tells us
thatG (n)@k#2ak coincides with the Floquet exponent of th
free system and expression~A2! is recovered withxR

(n)5a
andx I

(n)50.
Finally, we emphasize that in the general case a lin

dependence is obtained for large values ofuku also. Such a
feature may already be guessed from the linear depend
of the matrix~5! on k. This rough argument can be based
a formal perturbation expansion. If we confine ourselves
the case that the control force is derived from a single sc
quantity @cf. Eq. ~2!# then the dominant term in Eq.~5! is a
dyadic product. As a consequence there appear two diffe
kinds of eigenbranchesG (n)@k#. One branch, labeled bynmax
for convenience, admits an eigenfunction proportional tod2f
such that

G (nmax)@k#5kg11O~k0!,
~A5!

Pk
(nmax)~ t !5eka1(t)1O(k0)@d2f„j~ t !,0…1O~k21!#.

All other eigenfunctions are orthogonal toDg and the cor-
responding Floquet exponent does not possess a contrib
in leading order,

G (n)@k#5O~k0!,
~A6!

Dg@j~ t !#Pk
(n)~ t !5O~k21! ~nÞnmax!.

The computation of these expansions is standard, but
we focus on the dominant branch~A5! only. Inserting Eq.
~A5! into Eq. ~A1!, we obtain in orderO(k), taking the
definition ~5! into account,

@g11ȧ1~ t !#d2f„j~ t !,0…5d2f„j~ t !,0…$Dg@j~ t !#d2f„j~ t !,0…%.
~A7!
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FIG. 14. Solution curves of Eq.~B3! ~solid lines! in the complexz plane for c,cS , c5cS , and c.cS ~from left to right!. For
comparison the solution of Eq.~B4! is also shown~gray lines!.
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Sincea1(t) is periodic, plain integration leads to

g15
1

tE0

t

Dg@j~ t !#d2f„j~ t !,0…dt. ~A8!

The asserted linear dependence is obtained from Eq.~A5! in
leading order if the coefficient~A8! does not vanish. It is
remarkable that such a condition is violated if, e.g., the c
trol force couples only a single component of the state ve
to a single equation in a nondiagonal manner, since the sc
product in Eq.~A8! will vanish. Our analysis might indicate
why such coupling schemes are often not very effective.

In summary, our arguments indicate why such a rou
approximation as Eq.~A2! may work well in a general con
text. It is also clear that inclusion of higher order term
should not violate the linear asymptotics for largek. Further-
more, one should not confuse the largek asymptotics with
the limit of large control amplitudes, since the argument
the characteristic equation~6! contains the Floquet exponen
also. In fact, a closer inspection of the approximation~8!
reveals that the argumentK@11exp(2Lt2iDVt)# may satu-
rate at a finite value for large control amplitudes, since
second factor tends to zero. However, and above all, we w
to stress that the linear approximation~A2! makes sense only
for the Floquet exponents but not for the multipliers. T
latter involve an exponential dependence onk, and approxi-
mations along the lines of a plain series expansion would
completely useless.

APPENDIX B: SOLUTION OF THE TRANSCENDENTAL
CHARACTERISTIC EQUATION

The analytical investigation of Eq.~8! is to some extent
standard and essential parts can be found in textbooks~cf.
@19#!. Nevertheless, we present here an explicit and elem
tary discussion for completeness. First of all, the followi
abbreviations for the eigenvalues and the control amplit
are introduced:

zªLt1 iDVt2lt1~2txR
(n)!K,

~B1!
cª~2txR

(n)!Ke2lt1(2txR
(n))K.

Then Eq.~8! simplifies to

z52ce2z. ~B2!

While z may in general be a complex valued quantity,c
denotes a real number. Its sign corresponds to the sign o
control amplitude.

The real valued solutions of Eq.~B2! are computed fairly
easily. One just has to intersect an exponential with a stra
line. For c,0 a single solution exists, since the left ha
-
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e

n-

e

he

ht

side of Eq.~B2! is linearly increasing and the right hand sid
exponentially decaying. For 0,c,cSª1/e, two solutions
are present, where the smaller one tends to minus infinit
c approaches zero. AtcS both solutions collide and no rea
solution exists any more for largerc values. Solving Eq.~B2!
for c yields the properties just described in ac-Re(z) dia-
gram ~cf. Fig. 2!.

For the discussion of complex solutions we confine o
selves to the casec.0, i.e., (2txR

(n))K.0, for simplicity.
The other possibility (c,0) does not include new feature
since the real solution mentioned above already indica
instability. In polar coordinatesz5r exp(iw), Eq. ~B2! reads

r 5ce2r cosw, ~B3!

w5p2r sinw, ~B4!

where for the anglew we allow any real value. Each equa
tion describes a set of curves in the complex plane and
intersection points yield the desired eigenvalues.

The curves determined by Eq.~B3! and their dependenc
on c are summarized in Fig. 14. As for the analytical com
putation of this diagram, we recall that Eq.~B3! is of the just
discussed type that involves a linear and an exponential te
provided we are looking forr in terms ofw. Depending on
the sign of cosw, either one or two solutions may exist. Fo
w P(2p/2,p/2)umod 2p, cosw.0 holds and exactly one
solutionr 5r (w) exists. That branch gives rise to the loop
the region Re(z).0. Forw P(p/2,3p/2)umod 2p two cases
have to be distinguished. If 0,c,cS holds, one always ob-
tains two solutions, which depend monotonically on cosw.
This case completes the leftmost diagram in Fig. 14. Ac
5cS a critical case happens, since the two solutions of
~B3! just touch atr 51, w5p. As a consequence the tw
disconnected parts of the curve join. Forc.cS , Eq.~B3! has
two real solutions only if cosw is not too small, i.e., cosw
.cosw0(,0). The actual value of the critical anglew0 does
not matter, but it is easily computed from the condition th
the two solutions collide. The monotonic dependence of
solutions on cosw together with the fact that one of the re
solutions tends to infinity in the limit cosw ↑0 yields the
rightmost diagram in Fig. 14. A parametric representation
all these curves may be obtained by solving Eq.~B3! for
cosw. In particular, the asymptotic representation Im(z).
6c exp@2Re(z)# follows in the limit Re(z)→2`, so that
the curves increase exponentially to the left.

The curves determined by Eq.~B4! do not depend on the
value ofc and are depicted in Fig. 15. As for the analytic
computation we first note the trivial solutionw5p, r>0.
Furthermore, it would be sufficient to consider the upper h
plane w P(0,p)umod 2p since Eq.~B4! is invariant with



rd

i

Fo

l-

e

n
th
re
T
-
-

ly

yt
og
at
b

a
lt
ch

s of
its
tor.

lit-
he

ve
n
tors
ot
ry
ors
r-
e
m

h

re-

rix

ired

5054 PRE 61WOLFRAM JUSTet al.
respect to the substitutionp2w→w2p, and the curves are
symmetric with respect to the horizontal axis. Since acco
ing to Eq.~B4!

r 5
p2w

sinw
~B5!

holds andr is non-negative, only a restricted set of angles
possible, namely,w PI n , where I 05@0,2p#, I n>15@(2n
11)p,(2n12)p#, and I n<215@2np,(2n11)p#. Equa-
tion ~B4! just tells us that in each intervalI n the imaginary
part r sinw changes monotonically. FornÞ0 this yields the
branches in Fig. 15 that do not touch the horizontal axis.
n50 Eq. ~B4! implies the limitsr 51 atw5p, andr 5` at
w50, so that the forklike structure depicted in Fig. 15 fo
lows.

The intersection of the two graphs yields the desired
genvalues~cf. Figs. 14 and 15!. The shape of the curve in
Fig. 14 and the inequalitycS!p guarantee that the solutio
with largest real part is either one of the real solutions or
complex solution that occurs on the collision of the two
als. A crossing of eigenvalue branches does not occur.
analysis of other cases, e.g.,c,0 or even complex free Flo
quet multipliersv (n)Þ0,p, follows the same lines. In par
ticular, parts of the analysis do not change sincec enters only
Eq. ~B3! and a finite imaginary part would influence on
Fig. 15.

We admit that additional and sometimes tedious anal
cal estimates are necessary to prove rigorously all topol
cal features of Figs. 14 and 15. But the steps that the m
ematically intended reader might feel to be missing can
supplemented. They have been skipped here for clarity
brevity. In addition, one should keep in mind that the resu
just mentioned can be obtained by more abstract approa
also ~cf. @20#!.

APPENDIX C: HYBRIDIZATION OF FLOQUET
BRANCHES

The Floquet exponentsG (n)@k# @cf. Eq. ~A1!# are usually
computed with the help of the evolution matrix

FIG. 15. Solution curves of Eq.~B4! ~solid lines! in the complex
z plane. For comparison the solution of Eq.~B3! for c5cS is also
shown ~gray lines!. The actual value ofc does not influence the
large scale properties of the latter curve.
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U̇k~ t !5M @k,t#Uk~ t !, Uk~0!51. ~C1!

The exponents are just the logarithms of the eigenvalue
Uk(t). Floquet theory tells us that the evolution matrix spl
into a periodic and an exponentially time-dependent fac
For k50 this splitting reads

U0~ t !5Q0~ t !exp~C0t !, Q0~ t !5Q0~ t1t!, ~C2!

whereC0 determines the free Floquet exponents. The sp
ting ~C2! is, of course, not unique and different rules for t
imaginary part result in different periodic factorsQ0(t). We
use a periodic factor to simplify Eq.~C1!. Introducing

Vk~ t !5Q0
21~ t !Uk~ t !, ~C3!

we obtain

V̇k~ t !5@C01ka~ t ! ^ b~ t !#Vk~ t !, ~C4!

where the vectors in the control matrix are given by

a~ t ! ^ b~ t !5Q0
21~ t !d2f„j~ t !,0…^ Dg@j~ t !#Q0~ t !.

~C5!

Floquet exponents can be obtained from the matrix~C3! be-
cause of initial and periodicity conditions. In order to sol
Eq. ~C4! analytically we introduce a crude approximatio
and neglect completely the time dependence of the vec
~C5!. We have to mention that this approximation is n
invariant with respect to the convention for the imagina
part of the Floquet exponents since different periodic fact
Q0(t) imply different constraints for the control vectors. Fu
thermore, the matrixQ0(t) may be complex valued, a cas
that appears in particular if all multipliers of the free syste
are negative, i.e.,v (n)5p/t. However, in the case on whic
we concentrate in what follows, the factor exp(2ipt/t) may
be absorbed in the definition ofQ0(t), which then becomes a
real but antiperiodic quantity. Fortunately, Eq.~C5! stays
periodic in time and the assumption of constant vectors
mains consistent.

Hence, we are left with the diagonalization of the mat
C01ka^ b, where the first term has eigenvaluesl (n). If we
restrict ourselves to the two-dimensional case the des
Floquet exponents read
tG (1,2)@k#2 ip5 1
2 ~l (1)1l (2)1k^bua&!6A1

4 ~l (1)2l (2)!21 1
2 ~l (1)2l (2)!~a1b12a2b2!k1 1

4 ^bua&2k2. ~C6!
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Expression~C6! has, of course, the correct asymptotic b
havior for large values ofuku as described in Appendix A
For our purpose we need the branches in an intermediak
range and expression~C6! is not fully sufficient. In order to
keep all coefficients independent of each other we genera
to Eq. ~13!, which is the most general expression havi
linear asymptotic behavior and involving square root sin
larities only. It takes the hybridization of the two branch
into account appropriately.

APPENDIX D: LINEAR RESPONSE FOR DELAY
SYSTEMS

Consider a system subjected to time-delayed feedb
control and an additional small time-dependent external
rameterb(t),

ẋ~ t !5F„x~ t !,KF~ t !,b~ t !…. ~D1!

In the vicinity of the periodic orbitj(t) the dynamics up to
first order is given by

d ẋ~ t !5D1f„j~ t !,0…dx~ t !1d2f„j~ t !,0…$Dg@j~ t !#

3K@dx~ t !2dx~ t2t!#%1d3F„j~ t !,0,0…b~ t !,

~D2!

where in accordance with Sec. II the notationF(x,F,0)
5f(x,F) was used. Provided the periodic orbit subjected
control is stable, Eq.~D2! governs the whole dynamics in it
vicinity for small driving fields. Because of linearity the so
lution of Eq.~D2! may be obtained for each Fourier mode
the field b(t) separately,bw exp(iwt). The corresponding
mode of the responsedx(t) after discarding a transient i
given by rw(t)exp(iwt) with rw(t)5rw(t1t). By virtue of
Eq. ~D2! it obeys

d

dt
@rw~ t !eiwt#5M @mw ,t#rw~ t !eiwt1d3F„j~ t !,0,0…bweiwt,

mwªK~12e2 iwt!, ~D3!

where the abbreviation~5! has been used. The solution
this linear inhomogeneous equation in the stationary s
may be obtained by employing the evolution matrix~C1!. By
the usual spectral decomposition the latter can be expre
in terms of right and left eigenfunctions which are defined
Eq. ~A1! and
-
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G (n)@k#pk
(n)* ~ t !2ṗk

(n)* ~ t !5pk
(n)* ~ t !M @k,t#,

~D4!
pk

(n)~ t !5pk
(n)~ t1t!.

Then the stationary solution of Eq.~D3! reads

rw~ t !eiwt5E
2`

t

(
n

eG(n)[mw]( t2t8)

3
Pmw

(n)~ t !^pmw

(n)~ t8!ud3F„j~ t8!,0,0…&

^pmw

(n)uPmw

(n)&
bweiwt8dt8

5eiwtbw(
n
E

0

`

e(G(n)[mw] 2 iw)t8

3
Pmw

(n)~ t !^pmw

(n)~ t2t8!ud3F„j~ t2t8!,0,0…&

^pmw

(n)uPmw

(n)&
dt8,

~D5!

where^.u.& denotes the usual scalar product and the deno
nator is time independent, as a standard argument combi
the definitions~A1! and ~D4! shows. Additionally, the rates
G (n)@mw# have negative real part, which follows implicitl
from the general theory of differential-difference equatio
~cf. @20#!. Apart from the exponential, the integrand is pe
odic in t8 and by splitting the integration range into interva
of lengtht we finally obtain

rw~ t !eiwt5eiwtbw(
n

1

12etG(n)[mw] 2 iwt

3E
0

t

e(G(n)[mw] 2 iw)t8

3
Pmw

(n)~ t !^pmw

(n)~ t2t8!ud3F„j~ t2t8!,0,0…&

^pmw

(n)uPmw

(n)&
dt8.

~D6!

The response contains the driving frequencyw and integer
multiples of the frequency of the orbit 2p/t. The spectrum
of the control signalg@x(t)#2g@x(t2t)# is now easily ob-
tained in linear order. Its amplitude at the driving frequen
can be read off from Eq.~D6! and we end up with

I ~w!5U(
n

~12e2 iwt!S(n)~w!

12etG(n)[mw] 2 iwt U2

ubwu2, ~D7!

where
S(n)~w!ª
1

tE0

tE
0

t

e(G(n)[mw] 2 iw)t8
^Dg@j~ t !#uPmw

(n)~ t !&^pmw

(n)~ t2t8!ud3F„j~ t2t8!,0,0…&

^pmw

(n)uPmw

(n)&
dt8dt ~D8!
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denotes the constant Fourier mode contribution from the
riodic orbit. Thus the shape of the spectrum is in gene
quite complicated. However, the numerators are reg
functions of the frequency so that poles, i.e., pronounced
structures in the spectrum, are caused by the zeros of
denominator. If we recall that due to the characteristic eq
tion ~6! the expansion

tG (n)@K~12e2z!#2z

5b~z2Lt2 iVt!1O@~z2Lt2 iVt!2#

~D9!
-

e

,

-
l
r
e
e
-

is valid, we obtain from Eq.~D8! in leading order contribu-
tions with Lorentzian line shape, provided the frequencyw
comes close to the imaginary partV of the Floquet exponent
and the real partuLu is small,

I ~w!.
u~12e2 iVt!S(n)~V!u2

ubtu2@~w2V!21L2#
. ~D10!

Improved expressions for the spectra may be derived by e
ploying, e.g., the linear approximation~A2! in Eq. ~D7!. But
then, for consistency, the frequency dependence of the
merator also has to be taken into account.
ak,

ev.
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