Elementy Fizyki Jądrowej cz.2

Dr Krystyna Wosińska Wydział Fizyki PW

wosinska@if.pw.edu.pl

Literatura:

1. E.Skrzypczak, Z.Szeflinski, Wstęp do fizyki jądra atomowego i cząstek elementarnych, PWN

2. B. Nerlo-Pomorska, K. Pomorski: Zarys teorii jądra atomowego, PWN

3. D.H. Perkins, Wstęp do fizyki wysokich energii, PWN

5. Promieniotwórczość

Troje noblistów

1903 – M. Skłodowska-Curie, P. Curie, H. Becquerel (promieniotwórczość)
1911 - M. Skłodowska-Curie (rad i polon)
1935 - Irena Joliot-Curie, F. Joliot (synteza nowych nuklidów promieniotwórczych)

Przemiany jądrowe

$$_{z}^{A}\mathbf{X} \rightarrow_{z-2}^{A-4} \mathbf{X'} +_{2}^{4}\mathbf{He}$$
 rozpad α

$_{z}^{A}\mathbf{X} \rightarrow_{Z+1}^{A}\mathbf{X'} + \mathbf{e}^{-} + \bar{\nu}_{e}$	rozpad β^-
$_{z}^{A}\mathbf{X} \rightarrow_{z-1}^{A}\mathbf{X'} + \mathbf{e}^{+} + \nu_{e}$	rozpad β^+
$_{z}^{A}\mathbf{X} + \mathbf{e}_{p}^{-} \rightarrow_{z-1}^{A} \mathbf{X'} + \nu_{e}$	wychwyt K

$${}^{A}_{z} X^{*} \rightarrow {}^{A}_{z} X + \gamma$$
 przemiana γ

$${}^{A}_{z} X^{*} + e_{p}^{-} \rightarrow {}^{A}_{z} X + e^{-}$$
 wewnętrzna konwersja

Przemiany jądrowe

- spontaniczne
- przypadkowe

Aktywność – liczba rozpadów na jednostkę czasu: $A = \frac{\Delta N}{\Delta t} = \frac{dN}{dt}$

jednostka - bekerel:
$$1Bq = \frac{1}{s}$$

dawna jednostka – kiur (aktywność 1g Ra)

$$1 Ci = 3.7 \cdot 10^{10} \frac{1}{s}$$

Proces statystyczny – zmiana (ubytek) jąder proporcjonalny do całkowitej liczby jąder *N* oraz do czasu *∆t*.

$$\Delta N = -\lambda N \Delta t$$

$$\frac{dN}{dt} = -\lambda N$$

 $\ln N = -\lambda t + \ln C \quad \longrightarrow \quad N(t) = C e^{-\lambda t}$

warunki początkowe:
$$N(0) = N_0 \rightarrow C = N_0$$

stała rozpadu
 $N(t) = N_0 e^{-\lambda t}$
średni czas życia: $\tau = \frac{\int_0^\infty t N_0 e^{-\lambda t} dt}{\int_0^\infty N_0 e^{-\lambda t} dt} = \frac{1}{\lambda}$

http://www.lon-capa.org/~mmp/applist/decay/decay.htm

Aktywność źródła:

$$\mathcal{A} = \left| \frac{d\mathcal{N}(t)}{dt} \right| = \lambda \mathcal{N}(t) = \lambda \mathcal{N}_0 e^{-\lambda t}$$

$$\ln\left(\frac{N}{N_0}\right) = -\lambda t \qquad \text{mierzymy} \\ \text{aktywność} \qquad \ln\left(\frac{A}{A_0}\right) = -\lambda t$$

Pomiar stałej rozpadu

Ile jąder się rozpadło?

$$N_o - N(t) = N_o \left(1 - e^{-\lambda t}\right)$$

Czas połowicznego zaniku:

$$\frac{N_0}{2} = N_0 e^{-\lambda \tau} \to T = \frac{\ln 2}{\lambda} = \ln 2 \cdot \tau$$

Przemiany jądrowe

Proces statystyczny – liczba jąder, które ulegną rozpadowi w czasie $T_{1/2}$ fluktuuje wokół wartości $N_0/2$

fluktuacje statystyczne

 $\Delta N = \sqrt{N}$

fluktuacje względne

$$\frac{\Delta N}{N} = \frac{1}{\sqrt{N}}$$

Datowanie promieniotwórcze

Jądro wzbudzone przechodzi do stanu podstawowego pozbywając się energii wzbudzenia.

wewnętrzna konwersja ${}^{A}_{Z}X^{*} + e_{p}^{-} \rightarrow {}^{A}_{Z}X + e^{-}$

elektron orbitalny atomu

• przemiana γ jest procesem wtórnym – następuje po procesach prowadzących do wzbudzenia jądra (zderzenie, rozpad α lub β)

•czas życia stanu wzbudzonego: $\tau = 10^{-16} - 10^{-15}$ s

•izomeria jądrowa – bardzo długie czasy życia stanu wzbudzonego

•Procesem konkurencyjnym do emisji kwantu γ jest proces wewnętrznej konwersji – energia wzbudzenia jądra jest przekazywana bezpośrednio elektronowi z powłoki bliskiej jądra (*K* lub *L*) i elektron wylatuje z atomu.

współczynnik konwersji:

$$\stackrel{\scriptstyle }{\longrightarrow} \quad \frac{N_{e^-}}{N_{\gamma}} = \frac{\lambda_{e^-}}{\lambda_{\gamma}}$$

Pełny opis przejść radiacyjnych w jądrach daje elektrodynamika kwantowa.

Dla przejścia między dwoma stanami jądra o określonym spinie i parzystości: $J_1^{P_1} \rightarrow J_2^{P_2}$ musi być spełniona zasada zachowania momentu pędu i parzystości.

- spin kwanu gamma 1ħ
- zakaz przejścia $0 \rightarrow 0$

Całkowity moment pędu L unoszony przez kwant γ -multipolowość przejścia

Multipolowość – dipol elektryczny

Parzystość jądra rozpadającego się równa iloczynowi parzystości produktów rozpadu.

Elektryczne promieniowanie dipolowe (E1) zmienia parzystość stanu.

Multipolowość – dipol magnetyczny

Magnetyczne promieniowanie dipolowe (M1) nie zmienia parzystości stanu.

Multipolowość – kwadrupol elektryczny

Elektryczne promieniowanie kwadrupolowe (E2) nie zmienia parzystości stanu.

Multipolowość

ogólnie:
$$\frac{P_p}{P_k} = \begin{cases} (-1)^L & \text{przejście E} \\ (-1)^{L+1} & \text{przejście M} \end{cases}$$

zmienia parzystość: E1, M2, E3,...itd.

Zasada zachowania całkowitego momentu pędu:

$$\vec{J}_{p} - \vec{J}_{k} = \vec{L}$$
$$\left| J_{p} - J_{k} \right| \le L \le J_{p} + J_{k}$$

dla danych spinów jądra J_p i J_k dopuszczone są tylko pewne wartości polowości przejść radiacyjnych

parcjalne czasy życia:

 $\lambda = \sum \lambda_i \qquad 1/\tau = \sum 1/\tau_i$

Korelacja między czasami życia a energiami cząstek lpha

energie cząstek α : **< 10 MeV**

czasy życia: od 10⁻⁶ s do 10¹⁷ s

Dla cięższych jąder i cząstek α wysokość bariery ponad 20 MeV.

Klasyczny opis – emisja czastki α niemożliwa!

- G. Gamov (1904 1968) opis kwantowy:
- •cząstka α istnieje wewnątrz studni potencjału
- •cząstka α opisywana funkcją falową może przenikać barierę potencjału w zjawisku tunelowania

prawdopodobieństwo emisji:

$$P \approx \exp\left(-rac{2}{\hbar}\int\limits_{R_{in}}^{R_{out}}\sqrt{2m(V-E_{\alpha})}dr
ight)$$

ze wzrostem E_{α} maleje wykładnik – silnie rośnie prawdopodobieństwo

- monoenergetyczne, $E_{\alpha} \in (4 9)$ MeV
- szeroki zakres czasów, $t_{1/2} \in (10^{-7} \text{s}, 10^{10} \text{ lat})$
- ciężkie jądra, Z > 82
- cząstki α są słabo przenikliwe
- moment pędu cząstki α : $|J_p J_k| \le J_\alpha \le J_p + J_k$
- parzystość: $P_p / P_k = (-1)^{J\alpha}$

rozpad w spoczynku: $p_{\alpha} = p_{j}$

$$E_{j} = \frac{p_{j}^{2}}{2(m_{j} - m_{\alpha})} = \frac{p_{\alpha}^{2}}{2(m_{j} - m_{\alpha})} \qquad E_{\alpha} = \frac{p_{\alpha}^{2}}{2m_{\alpha}}$$
$$\frac{E_{\alpha}}{E_{j}} = \frac{p_{\alpha}^{2}}{2m_{\alpha}} \cdot \frac{2(m_{j} - m_{\alpha})}{p_{\alpha}^{2}} = \frac{(m_{j} - m_{\alpha})}{m_{\alpha}} \ge 20$$

 \sim 98% energii unosi cząstka lpha

Rozpad β

wychwyt elektronu

Widma beta

Neutrino

Trzecia cząstka, neutralna, o bardzo małej (zerowej?) masie

- nie gamma, bo spin połówkowy, np. : n \rightarrow p + e⁻ + ?

+ liczba leptonowa

Hipoteza neutrino: *W. Pauli* (1932), m = 0, $J = \frac{1}{2} h/2\pi$ Neutrino odkryte w 1957 r.

Rozpad β

Wychwyt k (elektronu z powłoki k)

Niezachowanie parzystości

Parzystość jest zachowana, jeśli nie można odróżnić laboratorium od jego lustrzanego odbicia.

Niezachowanie parzystości

Niezachowanie parzystości

- *T.D.Lee, C.N.Yang*: nie ma podstaw przyjmowania zasady zachowania parzystości w procesach słabych.
- doświadczenie C.S.Wu (1957): ${}^{60}_{27}Co \rightarrow {}^{60}_{28}Ni + e^- + \tilde{v}_e$
- stan podstawowy kobaltu $J^{P} = 5^{+}$, łatwo spolaryzować.

•
$$\hat{P} \Psi(r, \vartheta, \varphi) = \Psi(r, \pi - \vartheta, \pi + \varphi)$$

- zachowanie parzystości $\Rightarrow | \Psi(r, \vartheta, \varphi) |^2 = | \Psi(r, \pi \vartheta, \pi + \varphi) |^2$
- jeśli prawdopodobieństwo emisji elektronów $f(\mathcal{G}) = f(\pi \mathcal{G})$ to zachowana parzystość.

Eksperyment C.S.Wu

Wyniki eksperymentu

Wyniki dla różniej orientacji pola magnetycznego

W rozpadach beta parzystość nie musi być zachowana

Typy rozpadów

Naturalne pierwiastki promieniotwórcze

Początek trzech naturalnych szeregów promieniotwórczych

Początek czwartego szeregu: ²³⁷Np (T_{1/2} =2,14·10⁶ < wiek Ziemi) - nie występuje naturalnie

4 szeregi, bo tylko rozpad α zmienia liczbę nukleonów (zmiana o 4 nukleony)

- A = 4n+m liczba masowa pierwiastków w szeregu
- n liczba całkowita

m – charakteryzuje szereg: m = 0, 1, 2, 3

Liczba	Szereg	Nuklid początkowy	п	п	$T_{1/2}$	Nuklid
masowa			początkowe	końcowe	[lata]	końcowy
4n	torowy	$^{232}_{90}Th$	58	52	$1.33 \cdot 10^{10}$	²⁰⁸ ₈₂ <i>Pb</i>
4n + 1	neptunowy	²³⁷ ₉₃ Np	59	52	$2.20 \cdot 10^{6}$	²⁰⁹ 83 Bi
4 <i>n</i> + 2	uranowo-radowy	²³⁸ ₉₂ U	59	51	4.51.10 ⁹	²⁰⁶ ₈₂ Pb
4n +3	aktyno-uranowy	$^{235}_{92}U$	58	51	$7.15 \cdot 10^8$	²⁰⁷ ₈₂ <i>Pb</i>

Równowaga dynamiczna

powstawanie jąder N_i rozpad jąder N_i

$$\frac{dN_i}{dt} = N_{i-1}\lambda_{i-1} - N_i\lambda_i \qquad \text{warunki pocz.} \qquad \begin{array}{l} N_1(0) = N \\ N_{i>1}(0) = 0 \end{array}$$

$$\frac{dN_i}{dt} = const \quad (równowaga wiekowa gdy t \rightarrow \infty)$$

ustalone aktywności kolejnych członów łańcucha

najlżejsze radioaktywne jądro:

$${}^{3}_{1}H \rightarrow {}^{3}_{2}He + e^{-} + v_{e}$$

 $t_{1/2} = 12.5$ lat

6. Reakcje jądrowe

Reakcje jądrowe

Reakcja jądrowa – oddziaływania dwóch obiektów, z których przynajmniej jeden jest jądrem. W wyniku reakcji jądrowych powstają: •Nowe jądra

•Jądra w innym stanie niż początkowe

transmutacja – zamiana jednego jądra na inne

Pierwsza zaobserwowana reakcja jądrowa (Rutherford, 1919) Zapisujemy:

$${}^{4}_{2}He + {}^{14}_{7}N = {}^{17}_{8}O + {}^{1}_{1}H$$

lub $\alpha + {}^{14}_{7}N = {}^{17}_{8}O + p$

 $^{14}_{7}N(\alpha, p)^{17}_{8}O$

"Historyczne" reakcje jądrowe

1932 Chadwick: odkrycie neutronu ${}^4_2He + {}^9_4Be \rightarrow {}^{12}_6C + n \qquad Be(\alpha,n) C$ ${}^4_2He + {}^9_5B \rightarrow {}^{11}_7N + n \qquad B(\alpha,n) N$ Źródło neutronów - sproszkowana mieszanina radu i berylu

1932 r. protony z akceleratora Cocrofta-Waltona

 $p + {}^{7}_{3}Li \rightarrow {}^{4}_{2}He + {}^{4}_{2}He$ (Q > 0)

Bariera kulombowska – potrzebna niezerowa energia pocisku

Reakcje syntezy

deuter $d + d \rightarrow {}^{3}_{1}H + p$ (Q = 4.03 MeV) $d + d \rightarrow {}^{3}_{2}He + n$ (Q = 3.27 MeV) tryt $n + {}^{6}_{3}Li \rightarrow {}^{3}_{1}H + {}^{4}_{2}He$ $^{3}_{1}H + ^{2}_{1}H \rightarrow n + ^{4}_{2}He$ (Q = 17.58 MeV) wysokoenergetyczne neutrony (ok. 14 MeV)

Reakcje jądrowe

Fotoreakcja

 $\gamma + d \rightarrow n + p$ (Q = -2.22 MeV)

Brak stanów wzbudzonych deuteru

Sztuczna promieniotwórczość – F. i I. Joliot-Curie

$${}^{4}_{2}\text{He} + {}^{27}_{13}\text{Al} \rightarrow {}^{30}_{15}\text{P} + n \qquad (Q = -2.69 \text{ MeV})$$

$${}^{30}_{15}\text{P} \rightarrow {}^{30}_{14}\text{Si} + e^{+} + v_{e}$$

$$\alpha + {}^{10}_{5}\text{B} \rightarrow {}^{13}_{7}\text{N} + n$$

$$d + {}^{12}_{6}\text{C} \rightarrow {}^{13}_{7}\text{N} + n$$

$$p + {}^{12}_{6}\text{C} \rightarrow {}^{13}_{7}\text{N} + \gamma$$

$${}^{13}_{7}\text{N} \rightarrow {}^{13}_{6}\text{C} + e^{+} + v_{e}$$

Wychwyt neutronu

Enrico Fermi

n + ²⁷₁₃Al
$$\rightarrow$$
 ²⁴₁₁Na + α
 \downarrow
²⁴₁₁Na \rightarrow ²⁴₁₂Mg + e⁻ + $\overline{\nu}_{e}$

początek drogi do energetyki jądrowej

Reakcja aktywacji srebra:

$$n + {}^{107}_{47}Ag \rightarrow {}^{108}_{47}Ag + \gamma$$

$$\downarrow$$

$${}^{108}_{47}Ag \rightarrow {}^{108}_{48}Cd + e^{-} + \overline{\nu}_{e}$$

Reakcje jądrowe

kanał wejściowy \rightarrow kanał wyjściowy a + A \rightarrow B + ...

 $a + A \rightarrow a + A$ rozpraszanie elastyczne $a + A \rightarrow a + A^*$ rozpraszanie nieelastyczne

Energie:

- niskie < 20 MeV
- średnie do kilkaset MeV
- wielkie do kilku GeV
- ultrawielkie powyżej kilku GeV

Badamy:

 przekroje czynne – miara prawdopodobieństwa zajścia danego procesu

•tożsamości cząstek (masa, ładunek, spin, parzystość)

•charakterystyki kinematyczne (p_t, p_l, E, ϑ)

Eksperymenty ekskluzywne – pełna informacja o wszystkich produktach reakcji.

Eksperymenty inkluzywne – badanie niektórych produktów reakcji

Przekrój czynny

oddziaływanie

pomiar prawdopodobieństa

- n strumień padających cząstek
- k koncentracja centrów tarczy (identycznych), m⁻³
- σ efektywna powierzchnia centrów, m²
- Sdx objętość warstwy
- kSdx ilość centrów w warstwie
- $kSdx\sigma$ efektywna powierzchnia czynna warstwy
 - (bez przekrywania)

ułamek cząstek, które uległy oddziaływaniu:

prawdopodobieństwo oddziaływania

$$\frac{dn}{n} = -kdx\sigma$$

$$n(x) = n_0 e^{-k\sigma x}$$

pomiar σ

$$\ln n(x) = \ln n_0 - k\sigma \cdot x$$

mierzymy n(x) dla różnych grubości x, znając k (koncentrację centrów) wyznaczamy σ

średnia droga swobodna:

$$\lambda = \frac{\int_{0}^{\infty} x e^{-k\sigma x} dx}{\int_{0}^{\infty} e^{-k\sigma x} dx} = \frac{1}{k\sigma}$$

$$n(x) = n_0 e^{-\frac{x}{\lambda}}$$

pomiar σ przez pomiar średniej drogi swobodnej

jednostka przekroju czynnego:

barn, b=10⁻²⁸ m² (geometryczny przekrój poprzeczny jądra *A*~120)

Różniczkowy przekrój czynny

Różniczkowy przekrój czynny – prawdopodobieństwo, że produkty reakcji wylecą w kierunku wyznaczonym przez kąty θ i φ .

symetria azymutalna:

$$d\Omega = \int_{0}^{2\pi} d\varphi \sin \vartheta d\vartheta = 2\pi \sin \vartheta d\vartheta$$

w ogólności:
 $d\sigma = 2\pi |d(\cos \vartheta)|$
 $\frac{d\sigma}{d\Omega} = f(\vartheta)$
 $\sigma_{tot} = \int f(\vartheta) d\Omega = \int_{-1}^{+1} 2\pi f(\vartheta) d(\cos \vartheta)$
Izotropia:
 $f(\vartheta) = a$
 $\sigma_{tot} = 4\pi a$

Reakcje jądrowe

$$A + a \rightarrow B + b$$
 lub $A(a,b)B$

Zasada zachowania energii:

$$\left(M_{A}+m_{a}\right)\cdot c^{2}=\left(M_{B}+m_{b}\right)\cdot c^{2}+Q$$

Q > 0 – reakcja egzoenergetyczna

Q < 0 − reakcja endoenergetyczna ↓ Energia progowa

Zasady zachowania

Zasada zachowania ładunku:

$$\sum Z_i = const$$

Zasada zachowania liczby barionowej: $\sum A_i = const$

przykłady:

reakcja	ładunek	liczba nukleonów
${}^{2}_{1}H + {}^{2}_{1}H \rightarrow {}^{3}_{2}He + n$	1 +1 = 2 + 0	2 + 2 = 3 + 1
$p + {}^{7}_{3}Li \rightarrow {}^{7}_{4}Be + n$	1 + 3 = 4 + 0	1 + 7 = 7 + 1
$_{2}^{4}\text{He} + _{4}^{9}\text{Be} \rightarrow _{6}^{12}\text{C} + n$	2 + 4 = 6 + 0	4 + 9 = 12 + 1
${}^{4}_{2}\text{He} + {}^{11}_{5}\text{B} \rightarrow {}^{14}_{7}\text{N} + \text{n}$	2 + 5 = 7 + 0	4 + 11 = 14 + 1

Model jądra złożonego

Dwa etapy reakcji:

- pocisk wchłonięty przez jądro powstaje wzbudzone jądro złożone
- II. rozpad jądra złożonego z emisją cząstek

Przykłady:

Model jądra złożonego

Przykłady:

Model jądra złożonego

kształty rozkładów przekrojów czynnych podobne dla różnych reakcji – jądro złożone "nie pamięta" jak powstało.

> rozkłady pędów i energii neutronów wtórnych również podobne

Reakcje bezpośrednie

stripping (zdarcie): $d + {}^{16}O \rightarrow p + {}^{17}O$ (Q=1.92 MeV)

Reakcje bezpośrednie

pick-up (poderwanie): $d + {}^{16}O \rightarrow {}^{3}H + {}^{15}O$

Reakcje bezpośrednie

•twarde widma (przesunięte do wyższej energii) z ostrym maksimum

 Anizotropowy rozkład kątowy z maksimum dla małych kątów

Słaba zależność przekroju czynnego od energii cząstki padającej
Nukleony z którymi nie oddziałuje pocisk bezpośrednio nie uczestniczą w reakcji

•Czas trwania całej reakcji porównywalny z czasem przelotu nukleonu przez obszar jądra, ~10⁻²²s

Rozszczepienie

lata 30 XX w. – poszukiwanie nowych nuklidów

Ponadto stwierdzono obecność w stanie końcowym jąder środkowej części układu okresowego.

7. Rozszczepienie jąder i fizyka neutronów

Rozszczepienie

Reakcji jądrowa, w której jądro dzieli się na mniejsze fragmenty.

Rozszczepienie spontaniczne – zjawisko tunelowania przez barierę potencjału Rozszczepienie indukowane - najczęściej przez neutrony

Rozszczepienie – wyzwolona energia

 ${}^{(A_1+A_2)}_{(Z_1+Z_2)}X \to {}^{A_1}_{Z_1}X + {}^{A_2}_{Z_2}X + Q_{\text{fis}}$ $Q_{\text{fis}} = m(A_1 + A_2, Z_1 + Z_2)c^2 - [m(A_1, Z_1) + m(A_2, Z_2)]c^2$

Energia wydzielana dla symetrycznego rozszczepienia A₁=A₂
Przykład spontanicznego rozszczepienia

$$\begin{array}{lll} {}^{236}_{92} \mathrm{U} &\to \; {}^{137}_{53} \mathrm{I} \; + \; {}^{96}_{39} \mathrm{Y} \; + \; 3\mathrm{n} \\ & {}^{137} \mathrm{I} \; \to \; {}^{137} \mathrm{Xe} \; \mathrm{e}^- \, \bar{\mathrm{v}}_{\mathrm{e}} & t_{1/2} \; = \; 24.5 \, \mathrm{s} \\ & {}^{137} \mathrm{Xe} \; \to \; {}^{137} \mathrm{Cs} \; \mathrm{e}^- \, \bar{\mathrm{v}}_{\mathrm{e}} & t_{1/2} \; = \; 3.818 \, \mathrm{m} \\ & {}^{137} \mathrm{Cs} \; \to \; {}^{137} \mathrm{Ba} \; \mathrm{e}^- \, \bar{\mathrm{v}}_{\mathrm{e}} & t_{1/2} \; = \; 30.07 \, \mathrm{yr} \\ & {}^{96} \mathrm{Y} \; \to \; {}^{96} \mathrm{Zr} \; \mathrm{e}^- \, \bar{\mathrm{v}}_{\mathrm{e}} & t_{1/2} \; = \; 5.34 \, \mathrm{s} \; , \end{array} \right. \qquad \begin{array}{c} \mathrm{U} - \mathrm{Uran} \\ \mathrm{I} - \mathrm{Jod} \\ \mathrm{Y} - \mathrm{Itr} \\ \mathrm{Xe} - \mathrm{Ksenon} \\ \mathrm{Cs} - \mathrm{Cez} \\ \mathrm{Ba} - \mathrm{Bar} \\ \mathrm{Zr} - \mathrm{Cyrkon} \end{array}$$

$${}^{236}_{92}$$
U $\rightarrow {}^{137}_{56}$ Ba + ${}^{96}_{40}$ Zr + 3n + 4e⁻ + 4 $\bar{\nu}_{e}$

Rozszczepienie prowadzi zazwyczaj do produkcji elementów niesymetrycznych A₁≠A₂
Produkty rozszczepienia są zazwyczaj

•β-niestabilne

•Posiadają nadmiar neutronów

Energia uwalnia się jako energia kinetyczna produktów rozszczepienia

Bilans energetyczny

Średnie wartości energii dla rozpadu 1 jądra

		MeV
Kinetic energy of fragments		165 ± 5
Energy of prompt photons		7 ± 1
Kinetic energy of neutrons		5 ± 0.5
Energy of β decay electrons		7 ± 1
Energy of β decay antineutrinos		10
Energy of γ decay photons		6 ± 1
	Total	200 ± 6

Dla porównania:

energia uwalniana w reakcji spalania węgla wynosi 4 eV/atom

Tunelowanie przez barierę

Energia aktywacji *E*_A - różnica pomiędzy wartością maksymalną bariery a energią stanu podstawowego. Dla A~240 energia aktywacji wynosi od 6 do 7 MeV

Energia wiązania w modelu kroplowym $E_B = a_V \cdot A - a_S \cdot A^{\frac{2}{3}} - a_C \cdot Z^2 \cdot A^{-\frac{1}{3}} + \dots$

Zwiększanie deformacji

1. Zwiększa powierzchnię w stosunku do objętości (zwiększa a_s) 2. Zmniejsza siłę odpychania kulombowskiego (zmniejsza a_c) **Bariera potencjału** – nałożenie się tych 2 procesów

Rozszczepienie indukowane

Fig. 6.5. Cross-section for $\gamma^{236} \mathrm{U} \to \mathrm{fission}~[30].$

Rozszczepienie indukowane absorpcją neutronu

$$n + {}^{A-1}_{Z}X \rightarrow {}^{A}_{Z}X^* \rightarrow rozszczepienie$$

Jeśli energia wzbudzenia większa od energii aktywacji, neutron może mieć dowolnie małą energię **neutrony termiczne** (0.025 eV, 2200 m/s)

Energia wzbudzenia mniejsza od energii aktywacji \rightarrow energia progowa neutronu

Parametr rozszczepienia

Trwałości jądra sprzyja mała liczba nukleonów powierzchniowych ~A^{2/3} Nietrwałości jądra sprzyja odpychająca siła kulombowska ~ $Z^2 / A^{\frac{1}{3}}$

/ 1

Parametr rozszczepienia: x

$$x \cong \frac{Z^2 / A^{\frac{1}{3}}}{A^{\frac{2}{3}}} \qquad x = \frac{Z^2}{48A}$$

Rozszczepienie samoistne, gdy $x \ge 1$ (Z > 114, A > 270)

x	Jądro	T _{1/2}
0,74	²³⁸ U	6 10 ¹⁵ lat
0,82	²⁵⁴ Fm	220 dni
0,87	²⁵⁸ 104	0,01 s

Przyjmuje się, że od wartości Z²/A **33-33,7** jądra są rozszczepialne przez neutrony prędkie, a od **35,7** przez neutrony o dowolnej energii.

Rozszczepienie samoistne

Szybkość zachodzenia spontanicznego rozszczepienia

Nuklid	Czas półzaniku	Liczba rozszczepień samorzutnych na 100 rozpadów
²³⁵ U	7,04·10 ⁸ lat	7,0·10 ⁻⁹
²³⁸ U	4,47·10 ⁹ lat	5,4·10 ⁻⁵
²³⁹ Pu	2,41·10 ⁴ lat	4,4·10 ⁻¹⁰
²⁴⁰ Pu	6569 lat	5,0·10 ⁻⁶

Dla jąder występujących w przyrodzie rozszczepienie samoistne praktycznie nie zachodzi.

Przekroje czynne na rozszczepienie indukowane

NEUTRON CROSS-SECTIONS FOR FISSION OF URANIUM AND PLUTONIUM

Rozszczepienie indukowane absorpcją neutronu

Energia aktywacji

Dla n + $^{235}U \longrightarrow ^{236}U^*$

 $E_x = 6,5$ MeV (energia wzbudzenia jądra ²³⁶U^{*)} $E_A = 6,2$ MeV (energia aktywacji) Rozszczepienie dla neutronów termicznych (0,025 eV, 2200m/s)

Dla n + $^{238}U \longrightarrow ^{239}U^*$

 $E_x = 4,8 \text{ MeV}$ (energia wzbudzenia jądra ²³⁹U^{*)} $E_A = 6,6 \text{ MeV}$ (energia aktywacji) Rozszczepienie dla energii kinetycznej neutronów od ~2MeV

Skala czasowa

👝 Szybki proces

Promieniotwórcze produkty
rozszczepienia o długich czasach połowicznego zaniku

Charakterystyka procesu rozszczepienia

Rozszczepienie nie jest procesem symetrycznym

w zależności od liczby masowej A

Charakterystyka procesu rozszczepienia

Emisja neutronów

- **1.** natychmiastowa, średnio 2,5 neutronów, $\tau \approx 10^{-16} s$
- **2. opóźniona**, emisja neutronów po rozpadzie fragmentów, ~0,7% liczby neutronów, średnio $\tau \approx 12,5 s$

Charakterystyka procesu rozszczepienia

Rozkład energii kinetycznej fragmentów

(w sumie ok. 180 MeV)

Widmo energetyczne emitowanych neutronów (średnio ok. 2 MeV)

Reakcja łańcuchowa

$$^{235}_{92}U + n \rightarrow ^{236}_{92}U \rightarrow ^{A_1}_{Z_1}F_1 + ^{A_2}_{Z_2}F_2 + 2,5n + Q$$

liczba neutronów 0 – 8, (średnio 2,5) – te neutrony powodują następne rozszczepienie

Paliwo reaktora

Izotop $^{235}_{92}U$ jest jedynym nuklidem występującym w stanie naturalnym w przyrodzie , który można rozszczepić neutronami termicznymi.

Warunki podtrzymania reakcji:

Reaktor jądrowy

Jak spowolnić neutrony?

Moderator powinien zawierać jądra zbliżone masą do neutronu (jądra o małym *A*).

•H₂O – łatwo dostępna, może absorbować neutrony,

- •D₂O droga, mały przekrój czynny σ_a na pochłanianie, może powstać radioaktywny, niebezpieczny tryt,
- •C (grafit) mały przekrój czynny σ_a , tani.

Wydajność reakcji rozszczepienia

Jeśli pojawi się *n* neutronów, to $\eta \cdot n$ będzie po rozszczepieniu.

ale... I_f prędkich neutronów ucieknie, I_s neutronów ucieknie po spowolnieniu, pozostanie $\eta(1-I_f)(1-I_s)n$ neutronów.

Wydajność reakcji rozszczepienia

Nieliczne neutrony spowodują rozszczepienie zanim zostaną spowolnione, co prowadzi do współczynnika efektu prędkiego ε (nieco większy od 1), niektóre neutrony uzyskają energię rezonansową i zostaną pochłonięte bez rozszczepienia – współczynnik p < 1.

Pozostanie $\eta(1-l_f)(1-l_s)n\varepsilon p$ neutronów powolnych. Tylko część z nich, *f*, zostanie zaabsorbowana przez paliwo:

$$\eta(1-I_f)(1-I_s)n\varepsilon pf$$

Wydajność reakcji rozszczepienia

Liczba neutronów użytecznych w procesie rozszczepienia:

$$kn = \eta \varepsilon pf(1 - I_f)(1 - I_s)n$$

k - współczynnik mnożenia reaktora

Dla bardzo dużego reaktora znikają czynniki związane z ucieczką neutronów:

$$k_{\infty} = \eta \varepsilon p f \qquad \begin{array}{c} \eta > 1 \quad p < 1 \\ \varepsilon > 1 \quad f < 1 \end{array}$$

 η = 1,33 dla uranu naturalnego

 η = 2 dla uranu wzbogaconego (5%)

 η = 2,08 dla czystego uranu ²³⁵U

Współczynnik mnożenia reaktora k

Systemy hybrydowe

Bezpieczny reaktor: *k* < 1

Do podtrzymania reakcji potrzebne dodatkowe źródło neutronów:

spalacja (kruszenie) – jądra bombardowane protonami o energii 1 GeV emitują neutrony.

System złożony z reaktora i akceleratora.

8. Synteza termojądrowa

Synteza jądrowa

$$\begin{split} \mathrm{d}\,\mathrm{d} &\to {}^{3}\mathrm{He}\,\mathrm{n}\,+3.25\,\mathrm{MeV}\\ \mathrm{d}\,\mathrm{d} &\to {}^{3}\mathrm{H}\,\mathrm{p}\,+4\,\mathrm{MeV}\\ \mathrm{d}\,\mathrm{t} &\to {}^{4}\mathrm{He}\,\mathrm{n}\,+17.5\,\mathrm{MeV}\\ \mathrm{n}^{\,6}\mathrm{Li} &\to {}^{3}\mathrm{H}^{\,4}\mathrm{He}\,+4.8\,\mathrm{MeV}\\ \mathrm{d}^{\,6}\mathrm{Li} &\to {}^{2}^{4}\mathrm{He}\,+22.4\,\mathrm{MeV}\\ \mathrm{p}^{\,11}\mathrm{B} &\to {}^{3}\,{}^{4}\mathrm{He}\,+8.8\,\mathrm{MeV} \:. \end{split}$$

Bariera kulombowska wymaga nadania deuteronom energii kinetycznej $E_k \cong 0,01 \text{ MeV}$ (T = 10⁹ K)

Cykl proton - proton

Takie warunki panują w jądrach gwiazd i do 3 minut po Wielkim Wybuchu

Źródło energii gwiazd o masie podobnej do masy Słońca

Źródło energii gwiazd o masie większej od masy Słońca

W jego wyniku liczba jąder węgla i azotu zostaje nie zmieniona, natomiast znikają 4 protony, na których miejsce pojawia się jądro helu.

Spalanie helu

Po wyczerpaniu wodoru w centrum gwiazdy, reakcja syntezy ustaje i gwiazda zapada się Wzrost temperatury i kolejna reakcja syntezy

 $\label{eq:He} {}^{4}\mathrm{He} \; \leftrightarrow \; {}^{8}\mathrm{Be} \quad |\mathbf{Q}| = 92 \, \mathrm{keV} <= \mathrm{Należy} \; \mathrm{dostarczyć} \; \mathrm{energii} \; (\mathrm{z} \; \mathrm{energii} \; \mathrm{grawitacyjnej}). \; \mathrm{J}$ ądro berylu niestabilne => ustala się poziom równowagowy!

$$3^{4}\text{He} \rightarrow {}^{4}\text{He} {}^{8}\text{Be} \rightarrow {}^{12}\text{C}^{*} \rightarrow {}^{12}\Omega\gamma\gamma$$

 ${}^{4}\text{He} {}^{12}\text{C} \rightarrow {}^{16}\text{O}\gamma$

Biały karzeł – końcowe stadium ewolucji gwiazdy typu Słońca

Ewolucja gwiazd masywnych

Synteza coraz cięższych jąder trwa coraz krócej!

Proces s

Number of Neutrons

Jądro żelaza ma duży przekrój czynny na wychwyt neutronu

Tworzy się izotop niestabilny ze względu na rozpad β-

Proces powolny (slow):

średni czas wychwytu neutronu >> średni czas rozpadu β

Proces r

- Obserwowane rozpowszechnienie można wyjaśnić zakładając, że istnieje szybki wychwyt neutronów (czas pomiędzy kolejnymi wychwytami, krótszy niż czas potrzebny na rozpad)
- Proces r (*r-rapid*) możliwy tylko gdy występują silne strumienie neutronów

Powstanie gwiazdy neutronowej i wybuch supernowej

Synteza jądrowa

Reakcja termojądrowa $T \cong 10^9$ K

Przy temperaturze $T \cong 10^7$ K materia jest w postaci całkowicie zjonizowanej plazmy

Bomba wodorowa

kontrolowana synteza jądrowa?

Tokamak

Tokamak

www.iter.org

ITER

International Thermonuclear Experimental Reactor

Caradache w pobliżu Marsylii UE, Japonia, Chiny, Rosja, Korea Płd.

