What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
0 000	0 00	000	0
00	0000		

Exotic Fixed Points of the Belief Propagation Algorithm

7th Symposium on Physics in Economics and Social Sciences

Grzegorz Siudem $^{1,2)}$ and Grzegorz Świątek $^{2)}$

 Faculty of Physics
 Faculty of Mathematics and Information Science Warsaw University of Technology

Lublin, 15. May, 2014

イロト イポト イヨト イヨト

What is BP algorithm?	Applications of the BP Algorithm O OO OOOO	Our results 000	Conclusions O O
Outline			

Outline

What is BP algorithm?

Applications of the BP Algorithm

Our results

Conclusions

Exotic Fixed Points of the BP Algorithm

Warsaw University of Technology

3

< ロ ト < 回 ト < 三 ト < 三 ト</p>

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
○ ● ○ ○ ○ ○ ○ ○	0 00 0000	000	0

Figure: Set of the Random Variables.

Warsaw University of Technology

Э

< ロ > < 回 > < 回 > < 回 > < 回 >

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
	0 00 0000	000	0

Figure: Set of the Random Variables with some dependences.

Warsaw University of Technology

Э

< ロ ト < 回 ト < 三 ト < 三 ト</p>

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
○ ○○● ○○	0 00 0000	000	0

Setting of the problem

We are looking for the marginal probabilities

$$\mathbb{P}(x_N) = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_{N-1}} \mathbb{P}(x_1, x_2, \dots, x_N) =$$
$$= \sum_{x_1} \sum_{x_2} \cdots \sum_{x_{N-1}} \prod_{i=1}^N \mathbb{P}(x_i | \operatorname{Par}(x_i)).$$

Exotic Fixed Points of the BP Algorithm

Warsaw University of Technology

1

イロト イヨト イヨト イヨト

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
○ ○○● ○○	0 00 0000	000	0

Setting of the problem

We are looking for the marginal probabilities

$$\mathbb{P}(x_N) = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_{N-1}} \mathbb{P}(x_1, x_2, \dots, x_N) =$$
$$= \sum_{x_1} \sum_{x_2} \cdots \sum_{x_{N-1}} \prod_{i=1}^N \mathbb{P}(x_i | \operatorname{Par}(x_i)).$$

Number of summands grows exponentially with the size of the graph!

Exotic Fixed Points of the BP Algorithm

Warsaw University of Technology

・ロト ・ 日 ト ・ モ ト ・ モ ト

0 0 000 0 000 00 000 0 ●O 0000	What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
00		0 00 0000	000	0

Messages and beliefs

Messages

Messages

Let μ_{ij} ($\mu_{ij} \neq \mu_{ji}$), be real variables, where i, j are nodes of the graph. We will name those variables **messages.**

<ロト < 回 > < 回 > < 回 > < 回 >

0 0 000 0 000 00 000 0 ●0 0000	What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
		0 00 0000	000	0

Messages and beliefs

Messages

Messages

Let μ_{ij} ($\mu_{ij} \neq \mu_{ji}$), be real variables, where i, j are nodes of the graph. We will name those variables **messages.**

Figure: Visualisation of the impact passing messages on beliefs.

What is BP algorithm? ○ ○○○ ○● ○○	Applications of the BP Algorithm O OO OOOO	Our results 000	Conclusions O O
Messages and beliefs			

Beliefs

Beliefs Beliefs are functions $b_i(X_i)$ i $b_{ij}(X_i, X_j)$, depends somehow on messages.

What is BP algorithm? ○ ○○○ ○● ○○	Applications of the BP Algorithm O OO OOOO	Our results 000	Conclusions O O
Messages and beliefs			

Beliefs

Beliefs

Beliefs are functions $b_i(X_i)$ i $b_{ij}(X_i, X_j)$, depends somehow on messages.

Why beliefs are so important?

If the algorithm converges beliefs become marginal probabilities!

<ロト < 回ト < 巨ト < 巨ト</p>

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
○ ○○○ ○○ ●○	0 00 0000	000	0

Dynamics of suggestions

BP dynamic

$$\mu_{ij}^{1} = F([\mu_{ij}^{0}]_{i, j=1, \dots, N}),$$

$$\mu_{ij}^{n} = F([\mu_{i}^{n-1}j]_{i, j=1, \dots, N}).$$

Warsaw University of Technology

Э

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Exotic Fixed Points of the BP Algorithm

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
	0 00 0000	000	0

Dynamics of suggestions

BP dynamic

$$\mu_{ij}^{1} = F([\mu_{ij}^{0}]_{i, j=1, ..., N}),$$

$$\mu_{ij}^{n} = F([\mu_{i}^{n-1}j]_{i, j=1, ..., N}).$$

Scheme of the BP approach

$$[\mu_{ij}^0] \xrightarrow{F} [\mu_{ij}^1] \xrightarrow{F} [\mu_{ij}^2] \xrightarrow{F} \dots \xrightarrow{F} [\mu_{ij}^{fix}] \Longrightarrow b_i = \text{marginal probilities}$$

1

What is BP algorithm? ○ ○ ○ ○ ○	Applications of the BP Algorithm O OO OOOO	Our results 000	Conclusions O O
BP algorithm			

Convergence on trees

Pearl proved in 1982, that BP algorithm on trees always convergence to unique fixed point.

What is BP algorithm?	Applications of the BP Algorithm O	Our results 000	Conclusions O
00 00	0000		0
BP algorithm			

Convergence on trees

Pearl proved in 1982, that BP algorithm on trees always convergence to unique fixed point.

What if our graph is not a tree?

In general it is still open problem.

,,If we ignore the existence of loops and permit the nodes to continue communicating with each other as if the network were singly connected, messages may circulate indefinitely around these loops, and the process may not converge to a stable equilibrium "

Judea Perl cited in J. S. Yedidia, W. T. Freeman, Y. Weiss, *Understanding Belief Propagation and Its Generalizations*, Exploring Artificial Intelligence in the New Millennium, **8**, 239-236, (2003).

What is BP algorithm? O OOO OO OO	Applications of the BP Algorithm	Our results 000	Conclusions O O
Applications of BP			

Applications of the BP Algorithm

- Inference problems (Bayesian networks), [J. Pearl, Proc. of the Second National Conference on Artificial Intelligence, 133-136, (1982).]
- Ising model (Random Markov Field), [S. Dorogovtsev, et al., Rev. Mod. Phys., 80, 1275-1335, (2008).]
- ► Decoding of error-correcting codes (Tanner graphs), [B. J. Frey, et al., Adv. in Neural Inform. Proces. Systems, 10, (1998).]
- Iow-level computer vision and AI problems and more...,
 [J. S. Yedidia, et. al., Exploring Artificial Intelligence in the New Millennium, 8, 239-236, (2003).]

What is BP algorithm? O OOO OO OO	Applications of the BP Algorithm ○ ● ○ ○○○○	Our results 000	Conclusions O O
"Asia" example			

Asia example

Let us consider "ASIA" example, proposed by Laurtizen and Spiegelhalter [S. L. Lauritzen, D. J. Spiegelhater, Journal of the Royal Statistical Society Series B, 50, 157-224, (1988).]

- ► A Recent Trip to Asia (A) increases the chances of tuberculosis (T).
- Smoking (S) is a risk factor for both lung cancer (L) and bronchitis (B).
- X-ray result (X) can detect presence of either (E) tuberculosis or lung cancer, but cannot distinguish between them.
- Shortness of breath (D) may be caused by bronchitis (B), or either (E) tuberculosis or lung cancer.

・ロト ・ 日 ト ・ モ ト ・ モ ト

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
0 000 00 00	0 0 ● 0000	000	0

"Asia" example

llustracja

Figure: The fictional "ASIA" Bayesian Network.

Exotic Fixed Points of the BP Algorithm

Warsaw University of Technology

Э

イロト イヨト イヨト イヨト

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
0 000 00 00	0 00 ●000	000	0

Ising Model Assumptions

Ising Model

- $\blacktriangleright \ \sigma_i = \pm 1 \text{, } i = 1, \dots N^2 \text{,}$
- \blacktriangleright Our graph toral $N \times N$ lattice with periodic boundary conditions,

1

イロト イヨト イヨト イヨト

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
0 000 00 00	0 00 ●000	000	0

Ising Model Assumptions

Ising Model

- ▶ $\sigma_i = \pm 1$, $i = 1, ..., N^2$,
- \blacktriangleright Our graph toral $N \times N$ lattice with periodic boundary conditions,

ŧ	+	+	*	*	*	*	+	+	۲	*
ŧ	+	+	+	+	+	+	+	+	۲	4
ŧ	+	4	4	4	+	*	*	*	*	4
ŧ	*	4	*	*	*	+	*	4	۲	4
ŧ	4	4	4	*	4	۲	4	+	4	۲
ŧ	+	4	+	*	+	+	+	4	۲	*
ŧ	4	4	4	*	*	+	+	+	4	4
ŧ	+	+	4	4	+	+	+	4	4	4
ŧ	+	4	4	*	+	+	4	*	4	+
ŧ	*	4	*	4	+	*	*	*	4	4
ŧ	4	4	+	4	*	+	*	*	4	+

イロト イポト イヨト イヨ

What is BP algorithm? 0 000 00 00	Applications of the BP Algorithm ○ ○ ○ ○ ○	Our results 000	Conclusions O O
Ising Model			

Hamiltonian Function

$$U(\sigma) = -\sum_{i \in G} \sum_{j \in \mathcal{N}_i} J\sigma_i \sigma_j - \sum_{i \in G} h_i \sigma_i$$

Э

< ロ ト < 回 ト < 三 ト < 三 ト</p>

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
0 000 00 00	○ ○○ ○●○○	000	0

Ising Model

Hamiltonian Function

$$U(\sigma) = -\sum_{i \in G} \sum_{j \in \mathcal{N}_i} J\sigma_i \sigma_j - \sum_{i \in G} h_i \sigma_i$$

Gibbs Distribution

$$\mathbb{P}(\sigma) = \frac{\exp(-\beta U(\sigma))}{Z}, \quad Z = \sum_{\sigma} \exp(-\beta U(\sigma))$$

Exotic Fixed Points of the BP Algorithm

Warsaw University of Technology

Э

< ロ > < 回 > < 回 > < 回 > < 回 >

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
0 000 00 00	○ ○○ ○●○○	000	0

Ising Model

Hamiltonian Function

$$U(\sigma) = -\sum_{i \in G} \sum_{j \in \mathcal{N}_i} J\sigma_i \sigma_j - \sum_{i \in G} h_i \sigma_i$$

Gibbs Distribution

$$\mathbb{P}(\sigma) = \frac{\exp(-\beta U(\sigma))}{Z}, \quad Z = \sum_{\sigma} \exp(-\beta U(\sigma))$$

Interpretation

For fixed external field h, coupling energy J and temperature β BP finds magnetisations, i.e. expected values in **the marginal probabilities**.

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
0 000 00 00	○ ○○ ○○●○	000	0

Beliefs and Messages

For our case beliefs are given as

$$b_{ij}(\sigma_i, \sigma_j) = k \exp\left[\beta \left(h_i \sigma_i + h_j \sigma_j + J \sigma_i \sigma_j + \sigma_i \sum_{\substack{n \in \mathcal{N}_i \\ n \neq j}} \mu_{in} + \sigma_j \sum_{\substack{n \in \mathcal{N}_j \\ n \neq i}} \mu_{jn}\right)\right],$$

$$b_i(\sigma_i) = k_i \exp\left[\beta\left(h_i\sigma_i + \sigma_i\sum_{n\in\mathcal{N}_i}\mu_{in}\right)\right],$$

Warsaw University of Technology

Э

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Exotic Fixed Points of the BP Algorithm

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
0 000 00 00	○ ○○ ○○●○	000	0

Beliefs and Messages

For our case beliefs are given as

$$b_{ij}(\sigma_i, \sigma_j) = k \exp\left[\beta \left(h_i \sigma_i + h_j \sigma_j + J \sigma_i \sigma_j + \sigma_i \sum_{\substack{n \in \mathcal{N}_i \\ n \neq j}} \mu_{in} + \sigma_j \sum_{\substack{n \in \mathcal{N}_j \\ n \neq i}} \mu_{jn}\right)\right],$$

$$b_i(\sigma_i) = k_i \exp\left[\beta\left(h_i\sigma_i + \sigma_i\sum_{n\in\mathcal{N}_i}\mu_{in}\right)\right],$$

Marginalisation condition

$$b_i(\sigma_i) = \sum_{\sigma_j} b_{ij}(\sigma_i, \, \sigma_j).$$

Exotic Fixed Points of the BP Algorithm

Warsaw University of Technology

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
0 000 00 00	0 00 000●	000	0

Update function for the BP Algorithm for the Ising Model

$$F([\mu_{ij}]_{i,j=1,...,N}) = \frac{1}{2\beta} \ln \frac{\cosh\left[\beta\left(h_j + J + \sum_{\substack{n \in \mathcal{N}_j \\ n \neq i}} \mu_{jn}\right)\right]}{\cosh\left[\beta\left(h_j - J + \sum_{\substack{n \in \mathcal{N}_j \\ n \neq i}} \mu_{jn}\right)\right]}.$$

Warsaw University of Technology

1

イロト イヨト イヨト イヨト

What is BP algorithm? O OOO OO OO	Applications of the BP Algorithm O OO OOOO	Our results ●00	Conclusions O O
Numerical results			

Numerical results

We observed only two scenarios of the dynamics of BP

Figure: Two typical results of simulations - number of stable fixed points as function of β .

イロト イポト イヨト イヨ

0 0 0●0 0 000 00 0 0 00 00000 0 0	What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
00	0 000 00 00	0 00 0000	000	0

Numerical results

Exotic Fixed Points

Theorem (GS and GŚ, in preparation)

For every J, if tanh(J) > 1/3, then one can choose n(J) such that for every $k \ge n(J)$ there is a stationary point of H^0 on \mathcal{T}_{4k} with values of one-beliefs $b_i(1)$ both greater and smaller than 1/2, depending on i.

0 0 0●0 0 000 00 0 0 00 00000 0 0	What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
00	0 000 00 00	0 00 0000	000	0

Numerical results

Exotic Fixed Points

Theorem (GS and GŚ, in preparation)

For every J, if tanh(J) > 1/3, then one can choose n(J) such that for every $k \ge n(J)$ there is a stationary point of H^0 on \mathcal{T}_{4k} with values of one-beliefs $b_i(1)$ both greater and smaller than 1/2, depending on i.

What is BP algorithm? O OOO OO OO	Applications of the BP Algorithm O OO OOOO	Our results ○○●	Conclusions O O
Numerical results			

Open questions

- Stability of Exotic Fixed Points?
- Classification of periodic orbits of BP.
- Full Description of the bifurcation in the BP algorithm.

<ロト < 回ト < 巨ト < 巨ト</p>

What is BP algorithm? 0 000 00 00	Applications of the BP Algorithm O OOO OOOO	Our results 000	Conclusions ● ○
Conclusions			

Conclusions

- Belief Propagation Algorithm, proposed by Judea Pearl, is a useful tool in the problem of inference in different mathematical structures (e.g. random Markov fields, Bayesian networks).
- Wide range of important problems in statistical physics, computer science and engineering can be solved with BP.
- ► In that case flow of knowledge from physics to social science runs in the opposite direction.
- ► We found exotic fixed points of the BP algorithm but, there are still a lot of open questions about its dynamics. ¨

イロト イポト イヨト イヨト

What is BP algorithm?	Applications of the BP Algorithm	Our results	Conclusions
0 000 00 00	0 00 0000	000	•

Thank you!

Thank you for your attention!

This presentation you can find at http://if.pw.edu.pl/~siudem/research/FENS14.pdf

Exotic Fixed Points of the BP Algorithm

Warsaw University of Technology