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Outline
A diffusion process at a special class of multi-networks consisting of weakly coupled networks is analytically solved by an appropriate separation of time scales and by

reducing the system dynamics to a Markov chain for aggregated variables. A presence of fitness factors describing attractiveness of individual nodes is taken into account. In the case
of system of two coupled networks an equation analogous to the First Ficks Law with an additional driving force and a corresponding diffusion constant are found. The entropy

production is a sum of entropy changes resulting from a network heterogeneity and the entropy of the Markov chain. Our approach can be also used for hierarchical networks where
several different time scales are present.

Diffusion

Figure 1: Classical diffusion vs. diffusion on coupled networks.

Diffusion on connected networks as Markov Chain
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Separation of time scales

Let us assume that a flow between a node i belonging to a network A(a) to all nodes in this network is much larger than a flow from this node to nodes in the network A(b) where
a, b = 1, 2 and a 6= b. Such a situation takes place when an attractiveness of a node neighbourhood in the network a is much larger than an attractiveness coming from nodes
belonging to the network b and connected to this node
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Our assumption implies
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where N (a)(t) are the total number of particles in the a-th network at time t and µ
(a)
i are equilibrium distributions of density of particles in the non-connected networks.

Results for two networks

N (1)(t + 1) = (1− α(2 1))N (1)(t) + α(1 2)N (2)(t), (1)
where α(a b) are constants dependent on A(1), A(2), pc, f(1), f(2) as follows
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here a, b = 1, 2 and a 6= b and a corresponding equation for N (2)(t + 1) follows directly
from Eq. (1) by appropriate symmetry relations.
The parameters α(1 2) and α(2 1) describe integrated transition probabilities between the
networks at the macroscopic level (see Figure above) and can be further simplified when
there is no correlation between a node degree and a node fitness factor f(a) e.g.
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where a, b = 1, 2, a 6= b and α(1 2), α(2 1) � 1.
Near the equilibrium state variations of N (1)(t) are sufficiently slow and then it is possible
to write Eq. (1) in a form analogous of the First Ficks’s Law with a diffusion constant D
and in the presence of an additional internetwork driving force F
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(
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)

D + FN ,
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Using the approximation of separation of the time scales the total entropy of the system
and production of the entropy can be written as
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where S
(a)
∞ , a = 1, 2, are equilibrium entropies per particle.

Networks of networks
It is easy to show that our approach is valid also for any system of m weakly coupled
networks i.e. for networks of networks or for multiply networks. Then instead of equation
from the left frame one gets

N (a)(t + 1) =
m∑

l=1

α(a l)N (l)(t),

where α(a b) describes a strength of flow from a network A(b) to A(a) for a 6= b.
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, α(a a) = 1−
∑
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α(r a).

Then correspondent equation changes to

Ṅ (a)(t) =
∑
l 6=a

[−D (l a)(N (a)(t)− N (l)(t)) + F (l a)(N (a)(t) + N (l)(t))],

where
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2
.

Hierarchical network
The equivalence between lower and higher level dynamics exist when parameters f̂a, ĝa

and Âab, a, b = 1, . . . , m, for higher level (X̂ means parameter X for the higher level)
are appropriately defined. This can be done in several ways e.g.
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Diffusion on the networks with hierarchical structure - different diffusion constant and
entropy production for every level of hierarchy.
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