Tabela z przykładowymi cząstkami

Tabela 1 pokazuje przykładowe cząstki elementarne wraz z ich oznaczeniami, masami, średnimi czasami życia oraz składem kwarkowym.

rodzaj cząstki	oznaczenie	masa	średni czas życia	skład kwarkowy
pion, mezon π	π^{-}	$139.6 \ { m MeV}/c^2$	$2.6 \cdot 10^{-8} \text{ s}$	$d\bar{u}$
	π^+	$139.6 { m MeV}/c^2$	$2.6 \cdot 10^{-8} \text{ s}$	$u \bar{d}$
kaon, mezon K	K ⁻	$493.7 \ { m MeV}/c^2$	$1.24 \cdot 10^{-8} \text{ s}$	$sar{u}$
	K^+	$493.7 \; { m MeV}/c^2$	$1.24 \cdot 10^{-8} \text{ s}$	$u\bar{s}$
proton	p	938.3 MeV/c^2	∞	uud
neutron	n	939.6 MeV/ c^2	878.4 s	ddu
mezon J/Ψ	J/Ψ	$3097 \text{ MeV}/c^2$	$7.08 \cdot 10^{-21} \text{ s}$	$c\bar{c}$
foton	γ	0	∞	-
elektron	e	$0.511 \text{ MeV}/c^2$	∞	-

Tabela 1: Przykładowe cząstki i ich własności na podstawie pracy [1].

Pomiar fluktuacji w pędzie poprzecznym

Jedną ze zmiennych mierzących fluktuacje w pędzie poprzecznym (p_T) jest zmienna Φ [2], używana między innymi w eksperymencie NA49 [3, 4]. Zwiększone fluktuacje w pędzie poprzecznym mogą być sygnaturą punktu krytycznego silnie oddziałującej materii. Podążając za autorami pracy [2] możemy zdefiniować jednocząstkową zmienną $z_{p_T} = p_T - \overline{p_T}$, gdzie górna kreska oznacza uśrednianie po jednocząstkowym inkluzywnym rozkładzie (użyto wszystkich cząstek ze wszystkich zderzeń). Jak można zauważyć $\overline{z_{p_T}} = 0$. Następnie wprowadzamy zmienną dla danego zderzenia $Z_{p_T} = \sum_{i=1}^{N} (p_{Ti} - \overline{p_T})$, gdzie sumowanie przebiega po cząstkach w danym zderzeniu a N jest krotnością (liczbą) zaakceptowanych cząstek w tym zderzeniu. Zauważmy, że $\langle Z_{p_T} \rangle = 0$, gdzie $\langle \dots \rangle$ reprezentuje uśrednianie po zderzeniach. Wreszcie, zmienna Φ_{p_T} jest zdefiniowana jako:

$$\Phi_{p_T} = \sqrt{\frac{\langle Z_{p_T}^2 \rangle}{\langle N \rangle} - \sqrt{z_{p_T}^2}}.$$
(1)

Dla ułatwienia obliczeń numerycznych (brak konieczności podwójnego czytania danych) zmienna Φ_{p_T} może być wyrażona również przy użyciu jedynie charakterystyk globalnych zderzeń [5, 6]:

$$\Phi_{p_T} \equiv \sqrt{\frac{\langle X^2 \rangle}{\langle N \rangle} - \frac{2\langle X \rangle \langle N X \rangle}{\langle N \rangle^2} + \frac{\langle X \rangle^2 \langle N^2 \rangle}{\langle N \rangle^3}} - \sqrt{\frac{\langle X_2 \rangle}{\langle N \rangle} - \frac{\langle X \rangle^2}{\langle N \rangle^2}}, \tag{2}$$

gdzie:

$$X = \sum_{i=1}^{N} p_{T_i}, \qquad X_2 = \sum_{i=1}^{N} (p_{T_i}^2).$$

Pomiar dzetów hadronowych

Dżet (*jet*) jest to "sprej" skolimowanych cząstek pochodzących z fragmentacji rozproszonego kwarka lub gluonu. Tłumienie (gaszenie) dżetów hadronowych jest sygnaturą pojawienia się gęstej i gorącej materii po zderzeniu ciężkich jonów. Jest wiele metod badania dżetów w zderzeniach jądro+jądro (A + A, AA). Jedną z nich jest badanie czynnika modyfikacji jądrowej (R), zdefiniowanego jako:

$$R_{AA}(p_T) = \frac{1}{N_{coll}^{AA}} \frac{(\text{Invariant yield})_{AA}}{(\text{Invariant yield})_{pp}},\tag{3}$$

gdzie N_{coll}^{AA} jest liczbą binarnych (nukleon+nukleon, N + N, NN) zderzeń otrzymaną z tzw. modelu Glaubera. Jeśli chcemy porównać zderzenia centralne i peryferyczne A + A to zamiast wzoru (3) możemy użyć:

$$R_{CP}(p_T) = \frac{N_{coll}^{PERIPH}}{N_{coll}^{CENTRAL}} \frac{(\text{Invariant yield})_{CENTRAL}}{(\text{Invariant yield})_{PERIPH}}.$$
(4)

Pomiar przepływu kolektywnego

Kolektywność wyprodukowanej w czasie zderzenia materii, a w szczególności skalowanie tzw. przepływu eliptycznego (v_2) przez liczbę konstytuentnych kwarków (liczba kwarków walencyjnych tworzących daną cząstkę), jest traktowana jako jedna z głównych sygnatur tworzenia plazmy kwarkowo-gluonowej. Dla niecentralnych zderzeń A + A potrójnie różniczkowy rozkład niezmienniczy cząstek emitowanych w stanie końcowym jest opisany rozkładem Fouriera:

$$E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} (1 + 2v_1 \cos(\phi - \Phi_R) + 2v_2 \cos[2(\phi - \Phi_R)] + \dots),$$
(5)

gdzie y jest pośpiesznością (rapidity), ϕ kątem azymutalnym cząstki w układzie laboratorium, Φ_R jest tzw. kątem azymutalnym płaszczyzny reakcji (RP) w układzie laboratorium (inny dla każdego zderzenia) a $v_n \equiv \langle \cos[n(\phi - \Phi_R)] \rangle$ są współczynnikami Fouriera¹.

Dla centralnych zderzeń A + A mamy jedynie przepływ radialny (w rozwinięciu w szereg we wzorze (5) jedynka reprezentuje przepływ radialny, czyli izotropową emisję w kącie azymutalnym). Dla niecentralnych zderzeń A + A przepływ jest modulowany przez v_n (przepływ jest anizotropowy) a v_2 jest nazywane przepływem eliptycznym.

Pomiar temperatury wymrożenia termicznego

Temperaturę (T_{fo}) wymrożenia termicznego (koniec oddziaływań elastycznych między cząstkami wyprodukowanymi w zderzeniach) oraz średnią prędkość poprzecznej ekspansji źródła $\langle \beta_T \rangle$) można wyznaczyć z fitów w ramach tzw. *Blast-Wave Model* [8], gdzie rozkłady p_T fitujemy jako:

$$\frac{1}{p_T}\frac{dN}{dp_T} \propto \int_0^R r \, dr \, m_T I_0 \left[\frac{p_T \sinh \rho(r)}{T_{fo}}\right] K_1 \left[\frac{m_T \cosh \rho(r)}{T_{fo}}\right]. \tag{6}$$

 $^{^{1}}$ Więcej informacji na temat przepływów oraz wszystkich wspomnianych w dokumencie punktów można znaleźć w pracy [7].

Wielkości I_0 oraz K_1 są zmodyfikowanymi funkcjami Bessela, $\rho(r) = \operatorname{tgh}^{-1} \beta_T(r)$ a poprzeczny profil prędkości rozszerzania się źródła jest dany wzorem $\beta_T(r) \equiv \beta_{T(surface)}(r/R)^n$, gdzie R jest promieniem gorącego źródła (tzw. fireballu)².

Pomiar prędkości dźwięku

Zgodnie z modelem hydrodynamicznym [9] prędkość dźwięku (c_s) w tworzonej gęstej materii jądrowej jest powiązana z szerokością (σ_y) rozkładu pośpieszności pionów:

$$\sigma_y^2(\pi^-) = \frac{8}{3} \frac{c_s^2}{1 - c_s^4} \ln\left(\frac{\sqrt{s_{NN}}}{2m_p}\right),\tag{7}$$

gdzie $\sqrt{s_{NN}}$ jest energią w układzie środka masy na parę zderzanych nukleonów a m_p jest masą protonu. Obliczenia na sieciach (*lattice QCD*) [10] sugerują, że minimum w prędkości dźwięku może być związane z przejściem fazowym między gazem hadronowym a plazmą kwarkowo-gluonową. Dane eksperymentów NA49 i NA61/SHINE pokazują, że takie minimum przy pośrednich energiach akceleratora SPS w CERN jest widoczne nie tylko dla zderzeń Pb + Pb ale również dla p + p [7].

Fragmenty wzorów i tekstu zostały wzięte z pracy [7]. Publikacja ta zawiera bardziej szczegółowe omówienie wszystkich ww. zagadnień. Pokazane są również wybrane wyniki eksperymentalne z akceleratorów SPS, RHIC i LHC.

Literatura

- R. L. Workman *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
- [2] M. Gaździcki, S. Mrówczyński, Z. Phys. C 54, 127 (1992).
- [3] T. Anticic et al. (NA49 Collaboration), Phys. Rev. C 70, 034902 (2004).
- [4] T. Anticic et al. (NA49 Collaboration), Phys. Rev. C 79, 044904 (2009).
- [5] M. Mrówczyński, Phys. Lett. B 465, 8 (1999).
- [6] F. Liu *et al.*, Eur. Phys. J. C 8, 649 (1999).
- [7] K. Grebieszkow, PoS DIS2014, 018 (2014).
- [8] E. Schnedermann *et al.*, Phys. Rev. C 48, 2462 (1993).
- [9] V. Shuryak, Yad. Fiz. 16, 395 (1972).
- [10] S. Borsanyi et al., J. High Energy Phys. 1011, 077 (2010).

 $^{^{2}\}langle\beta_{T}\rangle = 2/(2+n)\beta_{T(surface)}$ i dlatego $\langle\beta_{T}\rangle$ jest mniejsze niż $\beta_{T(surface)}$.