Zadanie: Szablonowa klasa Matrix<T, Rows, Cols> - dzi$ BEZ PLIKU main.cpp(!)

Czesc | - Zdefiniuj klase szablonowa (0.5 pkt):

template <typename T, size_t Rows, size_t Cols>
class Matrix

dane sg przechowywane w array (#include <array>; size_t w #include <cstddef>):

std::array<std: :array<T, Cols>, Rows>
lub
std::array<T, Rows * Cols>

Czesc Il - Dostep do elementow (0.5 pkt)
Zaimplementuj metody (funkcje szablonowe!):

e T& at(size_t r, size_t c);
e const T& at(size_t r, size_t c) const;

Wymagania:
e rozdziat naplik .hi.cpp (w pliku ,,cpp” zakres to "Matrix<T, Rows, Cols>::")
o ,at” daje dostep do elementu na pozycji (r, c),

e sprawdzanie poprawnosci indekséw (uzyj assert):

np. assert(r < Rows); #include <cassert>
Czesé lll - Informacje o rozmiarze (0.5 pkt)
Zaimplementuj metody (moga by¢ w catosci w pliku .h):

e size t rows() const;
e size t cols() const;
Zwracajg one odpowiednio liczbe wierszy i kolumn macierzy.

Czesc¢ IV - Operacje wspolne dla wszystkich typow (1 pkt)
Zaimplementuj nastepujace metody:
e void Print() - wypisuje odpowiednio sformatowang macierz na ekranie

e void Fill(const T& value); - ustawia wszystkie elementy macierzy na podang
wartosé,

e size t Count(const T& value) const; —zlicza, ile razy dana wartos¢ wystepuje w
macierzy.



Czesc¢ V - Operacje na macierzy liczb (1.5 pkt)
Dla macierzy, w ktorych T jest typem liczbowym (int, double), zaimplementuj:
e T Sum() const; - Sum zwraca sume wszystkich elementoéw,

e double Mean() const; - zwraca Srednig arytmetyczna,

Metody powinny by¢ dostepne tylko dla typéw liczbowych; przyktad deklaraciji:

template <typename U = T>
std::enable if t<std::is_arithmetic<U>::value, U>
Sum() const;

Jak to zrobic¢?
Krok 1: wykrywanie ,,czy T jest liczbg”

STL daje nam gotowe narzedzie: funkcje w std: :is_arithmetic<T>::value w bibliotece
#include <type_traits> , ktoéra zwraca true dla: int, double, float, itd.

Krok 2: ograniczenie metod (std::enable_if)
Deklaracja w klasie:

template <typename U = T>
std::enable_if t<std::is_arithmetic<U>::value, typ zwracany> Sum() const;

Dlaczego U=T?
e beztego enable_if bytby sprawdzany przy definicji klasy,

¢ amychcemy, zeby byt sprawdzany dopiero przy wywotaniu metody.

Krok 3: implementacja Sum() oraz Mean()

W pliku. cpp oprécz standardowego “template <typename T, size t Rows, size t Cols>”
pamietaj tez o: template <typename U> (tutajjuzbezU=T!)
A sama funkcja powinna by¢ implementowana tak:

std::enable if t<std::is arithmetic<U>::value, typ_zwracany> Matrix<T, Rows,
Cols>::Function() const



Czesc¢ VI-Operacje na macierzy znakow (tylko dla jednego typu!)-1p
Dla macierzy znakdw:

e Matrix<char, Rows, Cols>
zaimplementuj metode:

e void RandomLetters(); - wypeiniajacg macierz losowymi literami

Jak upewnié¢ sie, ze bedzie uzywana tylko dla macierzy znakoéw? np:

static_assert(std::is_same<T, char>::value, "Available only for Matrix<char>");

Czesc¢ VIl - Przyktady uzycia
Twoje rozwigzanie musi poprawnie obstugiwacé ponizsze przypadki.
Macierz liczbowa

Matrix<int, 3, 3> m;

m.Fill(1);

m.at(1, 1) = 5;

m.Print();

std::cout << m.Count(1) << "\n";
std::cout << m.Sum() << "\n";
std::cout << m.Mean() << "\n";

Macierz znakow

Matrix<char, 4, 4> board;
board.at(0,0) = 'C';
board.at(9,1) = 'A’;
board.at(0,2) = 'T';
board.at(9,3) = 'S’';
board.Print();
board.RandomLetters();
board.Print();

Czy wiesz ze?

e Mozna napisa¢ U sum{}; zamiast U sum = 0; zeby zainicjalizowa¢ wielko$¢ na zero.
To samo z tablica: std::array<T, Rows*Cols> tab{};



e Zamiast sktadni:

for (int i= @ ;i< Rows; i++) {
for (int j= @ ;j< Cols; j++) {
this->at(i,j) = 0;

Mozesz uzyc:
for (const auto& row : data) {
for (auto v : row) {
vV = 0;
}

} dla std::array<std::array<T, Cols>, Rows>
lub

Albo w przypadku std: :array<T, Rows * Cols> po prostu

for (const auto& v : data) {



