
Zadanie: Szablonowa klasa Matrix<T, Rows, Cols> - dziś BEZ PLIKU main.cpp(!)

Część I - Zdefiniuj klasę szablonową (0.5 pkt):

template <typename T, size_t Rows, size_t Cols>

class Matrix

dane są przechowywane w array (#include <array>; size_t w #include <cstddef>):

std::array<std::array<T, Cols>, Rows>
 lub
std::array<T, Rows * Cols>

Część II – Dostęp do elementów (0.5 pkt)

Zaimplementuj metody (funkcje szablonowe!):

• T& at(size_t r, size_t c);

• const T& at(size_t r, size_t c) const;

Wymagania:

• rozdział na plik .h i .cpp (w pliku „cpp” zakres to "Matrix<T, Rows, Cols>::")

• „at” daje dostęp do elementu na pozycji (r, c),

• sprawdzanie poprawności indeksów (użyj assert):
 np. assert(r < Rows); #include <cassert>

Część III – Informacje o rozmiarze (0.5 pkt)

Zaimplementuj metody (mogą być w całości w pliku .h):

• size_t rows() const;

• size_t cols() const;

Zwracają one odpowiednio liczbę wierszy i kolumn macierzy.

Część IV – Operacje wspólne dla wszystkich typów (1 pkt)

Zaimplementuj następujące metody:

• void Print() – wypisuje odpowiednio sformatowaną macierz na ekranie

• void Fill(const T& value); – ustawia wszystkie elementy macierzy na podaną
wartość,

• size_t Count(const T& value) const; – zlicza, ile razy dana wartość występuje w
macierzy.

Część V – Operacje na macierzy liczb (1.5 pkt)

Dla macierzy, w których T jest typem liczbowym (int, double), zaimplementuj:

• T Sum() const; - Sum zwraca sumę wszystkich elementów,

• double Mean() const; - zwraca średnią arytmetyczną,

Metody powinny być dostępne tylko dla typów liczbowych; przykład deklaracji:

template <typename U = T>

 std::enable_if_t<std::is_arithmetic<U>::value, U>

Sum() const;

Jak to zrobić?

Krok 1: wykrywanie „czy T jest liczbą”

STL daje nam gotowe narzędzie: funkcję w std::is_arithmetic<T>::value w bibliotece
#include <type_traits> , która zwraca true dla: int, double, float, itd.

Krok 2: ograniczenie metod (std::enable_if)

Deklaracja w klasie:

 template <typename U = T>

 std::enable_if_t<std::is_arithmetic<U>::value, typ_zwracany> Sum() const;

Dlaczego U = T?

• bez tego enable_if byłby sprawdzany przy definicji klasy,

• a my chcemy, żeby był sprawdzany dopiero przy wywołaniu metody.

Krok 3: implementacja Sum() oraz Mean()

W pliku. cpp oprócz standardowego “template <typename T, size_t Rows, size_t Cols>”
pamiętaj też o: template <typename U> (tutaj już bez U = T!)
A sama funkcja powinna być implementowana tak:

std::enable_if_t<std::is_arithmetic<U>::value, typ_zwracany> Matrix<T, Rows,

Cols>::Function() const

Część VI – Operacje na macierzy znaków (tylko dla jednego typu!) – 1 p

Dla macierzy znaków:

• Matrix<char, Rows, Cols>

zaimplementuj metodę:

• void RandomLetters(); - wypełniającą macierz losowymi literami

Jak upewnić się, że będzie używana tylko dla macierzy znaków? np:

static_assert(std::is_same<T, char>::value, "Available only for Matrix<char>");

Część VII – Przykłady użycia

Twoje rozwiązanie musi poprawnie obsługiwać poniższe przypadki.

Macierz liczbowa

Matrix<int, 3, 3> m;

m.Fill(1);

m.at(1, 1) = 5;

m.Print();

std::cout << m.Count(1) << "\n";

std::cout << m.Sum() << "\n";

std::cout << m.Mean() << "\n";

Macierz znaków

Matrix<char, 4, 4> board;

board.at(0,0) = 'C';

board.at(0,1) = 'A';

board.at(0,2) = 'T';

board.at(0,3) = 'S';

board.Print();

board.RandomLetters();

board.Print();

Czy wiesz że?

• Można napisać U sum{}; zamiast U sum = 0; żeby zainicjalizować wielkość na zero.
To samo z tablicą: std::array<T, Rows*Cols> tab{};

• Zamiast składni:

 for (int i= 0 ;i< Rows; i++) {

 for (int j= 0 ;j< Cols; j++) {

 this->at(i,j) = 0;

 }

 }

Możesz użyć:

 for (const auto& row : data) {

 for (auto v : row) {

 v = 0;

 }
 } dla std::array<std::array<T, Cols>, Rows>
 lub

Albo w przypadku std::array<T, Rows * Cols> po prostu

for (const auto& v : data) {

v = 0;

}

