
1

Języki programowania

 należy napisać program umożliwiający generowanie liczb pseudolosowych z trzech różnych rozkładów (jednorodnego,

Gaussa oraz Poissona).

Tworzymy klasę abstrakcyjną (ATD) – 1 p. Jest to klasa do generowania liczb losowych .

Klasa będzie się nazywać Losuj. Jej plik nagłówkowy powinien zawierać metodę Exec() jako czysto wirtualną, tzn w pliku

Losuj.h:

 virtual double Exec() = 0;
Ponadto tworzymy konstruktor domyślny – ustawia ziarno z zegara systemowego: srand(time(NULL))
Wskazówka: wszystkie metody czysto wirtualne muszą istnieć w klasach pochodnych.

Przypomnienie: klasa, która ma co najmniej jedną funkcję czysto wirtualną nazywamy klasą abstrakcyjną.

Tworzymy dwie klasy pochodne: Jednorodny i Gauss

(1) Tworzymy klasę Jednorodny, która dziedziczy z klasy Losuj. Ponadto posiada:

• pola double fMin i double fMax – przedział, z którego będą losowane liczby

• konstruktor domyślny który ustawia fMin na 0 i fMax na 1

• Konstruktor z parametrami ustawiający pola fMin i fMax; srand ustawiamy analogicznie jak w konstruktorze

bez parametrów.

• metoda double Exec() - metoda wirtualna, zwraca liczbę pseudolosową z rozkładu jednorodnego z przedziału

<fMin;fMax)

(2) Następnie tworzymy klasę Gauss, która dziedziczy z klasy Losuj. Powinna ona zawierać:

• pola typu double fMean, double fSigma, które przechowują parametry rozkładu Gaussa: średnią i odchylenie

standardowe.

• konstruktor z parametrami ustawiający wszystkie pola

• metodę double Exec() - zwracającą liczbę pseudolosową z rozkładu Gaussa o zadanej średniej i odchyleniu

standardowym (szczegóły implementacji patrz Uwaga1!)

Zestaw bibliotek niezbędnych do stworzenia generatora:

cstdlib, ctime, cmath
Należy użyć funkcji rand() - zwracającej liczbę całkowitą pseudolosową z rozkładu <0;RAND_MAX), gdzie RAND_MAX

jest wielką liczbą - stałą zdefiniowaną w bibliotece standardowej.

Piszemy program testujący działanie dwóch wyżej wymienionych klas – 2.5 p.

Tworzymy w funkcji main obiekt klasy Jednorodny (np. uni1(-2,3);) z ustawionymi wartościami od -2 do 3. Losujemy

kilka liczb pseudolosowych i wypisujemy na ekran.

Tworzymy w funkcji main obiekt klasy Gauss (np. gaus1(100,5);) z ustawioną średnią na 100 i odchyleniem 5. Losujemy

kilka liczb pseudolosowych.

Używając operacji przekierowania strumienia należy zapisać wypisywane liczby do plików uniform.txt i gauss.txt.

GIT – 1 p.

Na koniec należy wykonany program umieścić w serwisie github (szczegółowa instrukcja na ostatniej stronie).

Klasa do generowania liczb z rozkładu Poissona – 0.5 p. należy dodać klasę Poisson (czytaj Uwaga2!), zachowującą

się podobnie do poprzedniej, wywołać na niej metodę Exec().

Uwaga 1!

Algorytm do generowania liczb pseudolosowych z rozkładu Gaussa (metoda Box-Muller'a):

• U, V – dane liczby pseudolosowe z rozkładu jednorodnego <0;1)

• Liczba losowa z rozkładu Gausa o średniej 𝜇i odchyleniu standardowym 𝜎dana jest wtedy wzorem:

𝑥 = 𝜇 + 𝜎√−2ln(𝑈)cos(2𝜋𝑉)

Uwaga 2!

Algorytm do generowania liczb pseudolosowych z rozkładu Poissona o średniej 𝜆:

• 𝑥0, 𝑥1, . ..- ciąg liczb pseudolosowych z rozkładu jednorodnego

• Jeżeli 𝑥0𝑥1. . . 𝑥𝑘 < e−𝜆, to k jest liczbą z rozkładu Poissona.

2

GIT

Git to system kontroli wersji, który służy do śledzenia zmian w plikach (najczęściej w kodzie

źródłowym) oraz do pracy zespołowej nad projektami.

Dzięki Gitowi można:

• zapisywać kolejne wersje projektu (historię zmian),

• cofać się do wcześniejszych wersji plików,

• pracować nad tym samym projektem równocześnie z innymi osobami,

• bezpiecznie przechowywać kod w repozytorium (lokalnym lub zdalnym, np. na GitHubie).

Git działa lokalnie na komputerze użytkownika, a serwisy takie jak GitHub, GitLab czy Bitbucket

umożliwiają przechowywanie repozytoriów w sieci i łatwą współpracę zespołową.

Instrukcja:

Zadanie polega na:

• założeniu konta w serwisie hostującym repozytoria Git (np. GitHub),

• utworzeniu własnego repozytorium.

Krok 1 – utworzenie konta w serwisie

• Należy założyć konto w wybranym serwisie hostującym repozytoria (jeśli nie zostało jeszcze

założone),

Krok 2 – wygenerowanie klucza SSH

W terminalu należy wygenerować klucz SSH, np. poleceniem:

ssh - keygen - t ed25519 - C "twoj_email@github.com"
Polecenie to generuje dwa pliki:

• klucz publiczny,

• klucz prywatny.

Klucz publiczny

• zawartość klucza publicznego należy skopiować do serwisu hostującego repozytoria,

• miejsce wklejenia zależy od serwisu (np. na GitHubie:

Profil użytkownika → Settings → SSH and GPG keys).

Klucz prywatny

• klucz prywatny zostaje na komputerze użytkownika,

• NIE WOLNO go nikomu udostępniać – umożliwia on podszywanie się pod właściciela konta.

Krok 3 – dodanie klucza do agenta SSH

Należy wykonać w terminalu polecenie:

ssh - add
oraz ustawić odpowiednie prawa dostępu do pliku z kluczem prywatnym:

chmod 600 nazwa_pliku_klucza_prywatnego
Krok 4 – utworzenie repozytorium

W serwisie github należy:

• utworzyć nowe repozytorium (dla dzisiejszych zajęć: prywatne, dla projektów najlepiej

publiczne)

Krok 5 – sklonowanie repozytorium na komputer

Repozytorium należy skopiować na lokalny komputer poleceniem:

git clone "adres_naszego_repozytorium"

Po wykonaniu powyższych kroków repozytorium jest gotowe do pracy. Do wypychania zmian

możemy użyć komendy git-gui. To graficzny interfejs pozwalający nam zatwierdzać zmiany i

wysyłać do zdalnego repozytorium bez zabawy komendami.

