
1

Języki programowania
należy napisać program umożliwiający całkowanie różnych funkcji numeryczne dwoma metodami (pudełkową i

trapezową).

1. Klasy reprezentujące funkcje (1.5 pkt – za przetestowany kod)

Tworzymy klasę abstrakcyjną (ATD). Jest to klasa reprezentująca dowolną funkcję.

Klasa będzie się nazywać Function. Jej plik nagłówkowy powinien zawierać metodę Calculate(double x) jako czysto

wirtualną, tzn w pliku Function.h:

 virtual double Calculate(double x) = 0;
Wskazówka: wszystkie metody czysto wirtualne muszą istnieć w klasach pochodnych.

Przypomnienie: klasa, która ma co najmniej jedną funkcję czysto wirtualną nazywamy klasą abstrakcyjną.

Tworzymy dwie klasy pochodne: FunctionSin oraz FunctionPolynomial (w tym samym pliku co klasa bazowa!)

(1) FunctionSin reprezentuje funkcję: f(x) = aꞏsin(bꞏx)

(2) FunctionPolynomial reprezentuje wielomian: f(x) = ax2 + bx + c

W obu klasach należy przeciążyć metodę Calculate by odpowiadała właściwej funkcji oraz odpowiednie konstruktory

ustawiające parametry funkcji (a, b, c…).

1. Całkowanie (2 pkt – za przetestowany kod)

Należy napisać dwie funkcje globalne które przyjmują referencję (bądź wskaźnik) na Function :

double IntegrateRectangle(const Function& f, double a, double b, int n);

double IntegrateTrapezoid (const Function& f, double a, double b, int n);

Szczegóły metod całkowania:

• n – ilość kroków (dokładność całkowania)

• krok całkowania numerycznego na przedziale (a, b):

Δ𝑥 =
𝑏 − 𝑎

𝑛

• całkowanie metodą prostokątów (pudełkową):

∫ 𝑓(𝑥) 𝑑𝑥 ≈
𝑏

𝑎

∑𝑓(

𝑛−1

𝑖=0

𝑥𝑖) Δ𝑥

• całkowanie metodą trapezów:

∫ 𝑓(𝑥) 𝑑𝑥 ≈
𝑏

𝑎

Δ𝑥

2
[𝑓(𝑥0) + 2∑𝑓

𝑛−1

𝑖=1

(𝑥𝑖) + 𝑓(𝑥𝑛)]

Piszemy program testujący działanie dwóch wyżej wymienionych klas

• Tworzymy w funkcji main obiekty:

o klasy FunctionSin: f(x) = sin(x)
o klasy FunctionPolynomial f(x) = 5x2 + 2x + 1

• Należy wypisać na ekranie całki liczone metodą prostokątów dla obu funkcji na przedziale 0-Pi() dla sinusa oraz

0-2 dla wielomianu dla 10 kroków.

• Należy wypisać na ekranie całki liczone metodą trapezową dla obu funkcji na przedziale 0-Pi() dla sinusa oraz

0-2 dla wielomianu dla dziesięciu kroków.

2. Porównanie dokładności (0.5 pkt)

• Zwiększyć liczbę kroków do 100

• Sprawdzić, czy wyniki obu metod się do siebie zbliżają

Na koniec należy wykonany program umieścić w serwisie github (szczegółowa instrukcja na następnej stronie).

- 1 pkt

2

GIT

Git to system kontroli wersji, który służy do śledzenia zmian w plikach (najczęściej w kodzie

źródłowym) oraz do pracy zespołowej nad projektami.

Dzięki Gitowi można:

• zapisywać kolejne wersje projektu (historię zmian),

• cofać się do wcześniejszych wersji plików,

• pracować nad tym samym projektem równocześnie z innymi osobami,

• bezpiecznie przechowywać kod w repozytorium (lokalnym lub zdalnym, np. na GitHubie).

Git działa lokalnie na komputerze użytkownika, a serwisy takie jak GitHub, GitLab czy Bitbucket

umożliwiają przechowywanie repozytoriów w sieci i łatwą współpracę zespołową.

Instrukcja:

Zadanie polega na:

• założeniu konta w serwisie hostującym repozytoria Git (np. GitHub),

• utworzeniu własnego repozytorium.

Krok 1 – utworzenie konta w serwisie

• Należy założyć konto w wybranym serwisie hostującym repozytoria (jeśli nie zostało jeszcze

założone),

Krok 2 – wygenerowanie klucza SSH

W terminalu należy wygenerować klucz SSH, np. poleceniem:

ssh - keygen - t ed25519 - C "twoj_email@github.com"
Polecenie to generuje dwa pliki:

• klucz publiczny,

• klucz prywatny.

Klucz publiczny

• zawartość klucza publicznego należy skopiować do serwisu hostującego repozytoria,

• miejsce wklejenia zależy od serwisu (np. na GitHubie:

Profil użytkownika → Settings → SSH and GPG keys).

Klucz prywatny

• klucz prywatny zostaje na komputerze użytkownika,

• NIE WOLNO go nikomu udostępniać – umożliwia on podszywanie się pod właściciela konta.

Krok 3 – dodanie klucza do agenta SSH

Należy wykonać w terminalu polecenie:

ssh - add
oraz ustawić odpowiednie prawa dostępu do pliku z kluczem prywatnym:

chmod 600 nazwa_pliku_klucza_prywatnego

Krok 4 – utworzenie repozytorium

W serwisie github należy:

• utworzyć nowe repozytorium (dla dzisiejszych zajęć: prywatne, dla projektów najlepiej

publiczne)

Krok 5 – sklonowanie repozytorium na komputer

Repozytorium należy skopiować na lokalny komputer poleceniem:

git clone "adres_naszego_repozytorium"

Po wykonaniu powyższych kroków repozytorium jest gotowe do pracy. Do wypychania zmian

możemy użyć komendy git-gui. To graficzny interfejs pozwalający nam zatwierdzać zmiany i

wysyłać do zdalnego repozytorium bez zabawy komendami.

