Jezyki Programowania, Laboratorium 12 — zadanie realizowane w parach

Wirtualnos¢ i polimorfizm w jezyku C++

Wirtualno$¢ oraz polimorfizm (rozumiany jako mozliwo$¢ wyboru wersji metody w trakcie dzialania programu) sa jednymi z
najwazniejszych cech programowania obiektowego w jezyku C++. Umozliwiajg one tworzenie kodu elastycznego, tatwego w rozbudowie
oraz niezaleznego od konkretnych typéw obiektow. Celem dzisiejszego laboratorium jest zapoznanie si¢ z zasada dziatania metod
wirtualnych, klas abstrakcyjnych oraz polimorfizmu.

1. Klasa bazowa: Bryla
Zaimplementowac klas¢ Bryla, bedaca klasa bazowa dla wszystkich bryt geometrycznych obstugiwanych w programie.
Klasa Bryla przechowuje naste¢pujace pola:
e floatx,y, z— wspotrzgdne polozenia bryly w przestrzeni
Pola te sg dost¢gpne wylacznie dla klas pochodnych.
W czesci publicznej klasa zawiera:

e deklaracje wirtualnych metod: Wypisz() - wypisuje pola na ekranie; oraz Objetosc() - domys$Inie metoda powinna zwracac 0.

2. Klasa pochodna: Prostopadloscian
Jako przyktad konkretnej bryly zaimplementowac klas¢ Prostopadloscian, dziedziczaca po klasie Bryla.
Klasa Prostopadloscian zawiera dodatkowe pola:
e double a, b, ¢ — dtugosci krawedzi prostopadtoscianu
Wspoélrzedne X, y, z z klasy bazowej oznaczajg potozenie jednego z wierzchotkoéw bryty.
Nalezy zdefiniowac:
e konstruktor domy§lny (wszystkie warto$ci ustawione na 0),
e konstruktor inicjalizujacy wszystkie pola klasy.
Implementacje metod:
e Wypisz() powinna wypisac:
Prostopadloscian (X, y, z, a, b, ¢)
gdzie kazda warto§¢ wypisana jest w osobnej linii,
e Objetosc() powinna zwrdcic objetos¢ prostopadtoscianu.

3. Program testujacy dzialanie klas
W funkcji main:
1. Stworzy¢ wskaznik (wraz z obiektem) b1 na klas¢ Bryla (konstruktor domyslny).
Wywota¢ Wypisz() oraz wyswietli¢ Objetosc().
2. Stworzy¢ obiekt p1 klasy Prostopadloscian (konstruktor domyslny).
Wywota¢ Wypisz() oraz wyswietli¢ Objetosc().
3. Stworzy¢ wskaznik (wraz z obiektem) p2 na klase Prostopadloscian
x=1,y=2,z=3,a=4,b=15,c=6).
Wywola¢ Wypisz() oraz wyswietli¢ Objetosc().
Nastepnie zadeklarowaé wskaznik:
Bryla* wsk;
i przypisa¢ do niego kolejno obiekty pl oraz p2, po czym wywolac:
wsk->Wypisz();
Program skompilowac¢ i uruchomié.

Dodatkowo nalezy:

e zadeklarowa¢ wirtualny destruktor w klasie Bryla
Zapamietaj: Jesli klasa deklaruje jedna ze swoich funkcji jako virtual, wowczas jej destruktor deklarujemy takze jako virtual!
Skoro w klasie deklarujemy jaka$ funkcje wirtualna, to znaczy, ze na obiekty klas pochodnych zamierzamy czasem mowié jak na obiekty
klasy podstawowej, co przy p6zniejszym niszczeniu obiektow mogloby by¢ problemem — nie zwalnialiby$smy pamigci dla niektorych
sktadnikow klas pochodnych.

Eksperyment
Usung¢ stowo kluczowe virtual z metod w klasie Bryla, ponownie skompilowa¢ 1 uruchomi¢ program.
Zaobserwowac¢ réznice w zachowaniu programu i wyjasni¢ je prowadzacemu.

Podsumujmy:

Jesli kompilator natrafi na obiekt danej klasy, np. Bryla, uruchamia dla niego funkcj¢ sktadowa z wiasciwej mu klasy.

Jesli kompilator natrafi na wskaznik lub referencje klasy Bryla, ma dwie mozliwosci wywotania funkcji sktadowe;j:

1) Skoro jest to wskaznik do klasy Bryla, wywotuje metode sktadowa klasy Bryla. Jest to domys$lne zachowanie kompilatora.

2) Kompilator widzi, ze jest to wskaznik do klasy Bryla, ale zamiast na $lepo si¢ga¢ do klasy Bryla uzywa swojej inteligencji: nie
daje si¢ zwiez¢ typem i sprawdza, na co faktycznie wskaznik wskazuje. Wtedy moze si¢ zorientowad, ze wskaznik tak naprawde
wskazuje na obiekt klasy pochodnej Prostopadloscian, zatem orientujac si¢ wedlug typu obiektu uruchamia funkcj¢ sktadowa dla
prostopadtoscianu. Takie zachowanie wymusza stowo kluczowe virtual przed nazwa funkcji sktadowe;.

4. Metoda czysto wirtualna — klasa abstrakcyjna

Zmieni¢ deklaracje metody w klasie bazowej na czysto wirtualng:

virtual double Objetosc() = 0;

Poprawic¢ kod tak, aby ponownie si¢ kompilowat.

Pytanie:

Dlaczego czg$¢ wezesniej napisanego kodu nie bedzie si¢ teraz kompilowaé?

Wskazowka: Klasa zawierajaca co najmniej jedng metode czysto wirtualng jest klasa abstrakceyjna.

Po co tworzy¢ klasy abstrakcyjne?

Czasem mamy jakis$ obiekt, ktory taczy cechy kilku innych (jak np. nasza klasa Bryta) ale sam nie przedstawia swoja istotng zadnego
konkretnego obiektu. Mamy kule, prostopadlosciany i inne — jak policzy¢ pole powierzchni niezidentyfikowanej bryty? Klasa abstrakcyjna
jest klasg jakby ,,niedokonczona”. Jej dokonczenie realizowane jest przez klasy pochodne.

5. Funkcja globalna wykorzystujaca polimorfizm

Nalezy napisa¢ funkcje globalna, ktora bedzie operowac na referencji do klasy bazowej Bryla, a jej zachowanie bedzie zalezne
od rzeczywistego typu obiektu przekazanego do funkcji.

5.1. Zdefiniowa¢ funkcje globalna:
void WypiszlObjetosc(Bryla* b);
5.2. Funkcja powinna:
e wywota¢ metode Wypisz(),
e wypisac na ekran warto$¢ zwracang przez Objetosc().
5.3. W programie testujacym:

e utworzy¢ co najmniej dwa obiekty réznych klas pochodnych,
e przekazaé je do funkcji WypiszIObjetosc,
e zaobserwowac, ze wywolywane sg odpowiednie wersje metod wirtualnych.

Ten element zadania pokazuje, ze jedna funkcja moze poprawnie obslugiwa¢ rézne typy obiektow, o ile operuje na referencji
lub wskazniku do klasy bazowe;j.

6. Kolekcja bryl — tablica wskaznikow

Celem ponizszego ¢wiczenia jest zaprezentowanie polimorfizmu w polaczeniu z dynamiczng alokacja pamieci oraz kolekcja
obiektow.

6.1. W programie glownym nalezy zadeklarowaé kontener:
std::vector<Bryla*> bryly;

6.2. Do kontenera dodaé¢ dynamicznie utworzone obiekty:
bryly.push_back(new Prostopadloscian());
bryly.push_back(new Prostopadloscian(1,2,3,4,5,6));

6.3. Przejs$¢ po wszystkich elementach kontenera i dla kazdego:

e wywota¢ Wypisz(),
e wyswietli¢ objetosc bryt.

6.4. Zwolni¢ pamieé:
for (Bryla* b : bryly)
delete b;
Zadanie pokazuje tez sens stosowania wirtualnego destruktora.

(zadanie dodatkowe na 3 stronie)

7. Rozszerzenie hierarchii klas — zadanie dodatkowe

Celem zadania jest pokazanie, ze dodanie nowej klasy pochodnej nie wymaga modyfikacji istniejacego kodu korzystajacego z
polimorfizmu.

7.1. Zaimplementowa¢ klase¢ Kula, dziedziczaca po klasie Bryla.
Klasa powinna zawierac:

e pole double r — promien kuli,
e konstruktor inicjalizujacy wszystkie pola,
e implementacje metod:

o Wypisz(),

o Objetosc().

7.3. W programie testujacym:

e utworzy¢ obiekt klasy Kula,

e doda¢ go do wczesniej utworzonego kontenera vector<Bryla*>,

e wywota¢ na nim metody Wypisz() i Objetosc() poprzez wskaznik do klasy Bryla.
7.4. Zaobserwowac, ze:

e nie bylo koniecznosci zmiany kodu petli obstugujacej bryty,

e nowe bryly sg automatycznie obslugiwane przez istniejace funkcje.

Zadanie ilustruje jedng z kluczowych zalet programowania obiektowego: latwos¢ rozbudowy programu bez ingerencji w juz
istniejacy kod.

