
Advanced ProgrammingAdvanced Programming
C#C#

Lecture 4

dr hab. inż. Małgorzata Janik
malgorzata.janik@pw.edu.pl

Today you will
need:

PROJECTS!PROJECTS!

This week (or next Monday This week (or next Monday
the latest) I would like to the latest) I would like to
receive proposals for the receive proposals for the
Projects. Please send 1-2 Projects. Please send 1-2

sentences via Teams.sentences via Teams.

4 / 41C# Lecture 5 Małgorzata Janik

Project I
● Few summary slides about the projects.

Presentation must include:●

– Idea, description & specification of the project
● used technologies

– Screenshots of the prototype of the application

Presentation must be put in the github and then the
link sent to malgorzata.janik@pw.edu.pl

●

5 / 41C# Lecture 5 Małgorzata Janik

Classes #6: Project I
● 10 min presentation / project

Presentation must include:●

– Idea, description & specification of the project
● used technologies

–

–

Screenshots of the prototype of the application

Interesting knowledge /skills obtained during the
realization of the project (at least 1 example)

● Should be presented in such a way that it would
be interesting for other students

Presentation must be sent to
malgorzata.janik@pw.edu.pl latest 13.11, 9:00

Prototype of the project should available for further
checks and discussion

●

●

ASP .NET CoreASP .NET Core
(Razor Pages)(Razor Pages)

7 / 30C# Lecture 4 Małgorzata Janik

Web developement with .NET

ASP.NET is an open source web framework
for building modern web apps and services
with .NET. ASP.NET creates websites based
on HTML5, CSS, and JavaScript that are
simple, fast, and can scale to millions of users.

https://www.asp.net/

ASP stands for Active Server Pages

https://www.asp.net/

8 / 30C# Lecture 4 Małgorzata Janik

https://www.asp.net/web-forms/what-is-web-forms

ASP .NET Core Razor Pages

ASP.NET Core Razor Pages is a part of the ASP.NET web application framework and is
included in Visual Studio.

What is Razor Pages

A framework based on Razor – a syntax that combines HTML with C#.

Each page consists of two files (encouraging separation of concerns):

● Page.cshtml (HTML + Razor)
● Page.cshtml.cs (logic in C#)

Logic and view are kept close together → easier to maintain.

Ideal for simple and medium-sized web applications.

Razor Pages makes use of the popular C# programming language for server-side programming, and the
easy-to-learn Razor templating syntax for embedding C# in HTML mark-up to generate content for browsers
dynamically.

The Razor Pages framework is lightweight and very flexible. It provides the developer with full control over
rendered HTML. Razor Pages is the recommended framework for cross-platform server-side HTML
generation.

https://www.asp.net/web-forms/what-is-web-forms

9 / 30C# Lecture 4 Małgorzata Janik

Tasks
● Intro: create new ASP.NET Core Web App (Razor Pages), check it

out, make some simple modifications

● File upload: allow users to upload their pictures into appropriate
directory on the server

● Gallery: display uploaded pictures side by side
● If picture is clicked, bigger version should be displayed below

Demonstration

10 / 30C# Lecture 4 Małgorzata Janik

Tasks: Intro

● Create new ASP.NET Core Web App (Razor Pages):
„PhotoGallery”

● Run the project in the browser

● Modify the „Privacy” web page
● Add new Razor Page → „Upload”. Add it to the main menu (at the

top)

– Project → Add new... → Razor Page...
● Prepare Photo Gallery service

11 / 30C# Lecture 4 Małgorzata Janik

Run default project
in Lab228 use http

12 / 30C# Lecture 4 Małgorzata Janik

Modification of „Privacy” webpage

@page
@model PrivacyModel
@{
 ViewData["Title"] = "Privacy Policy";
}
<h2>Privacy Policy</h2>
<p>This photo gallery is a demo web application created for educational purposes.</p>

<h3>1. Uploaded Photos</h3>
<p> Photos uploaded through this website are stored locally on the server in the <code>wwwroot/uploads</code> folder.
They are not shared, analyzed, or transmitted to any third parties.
</p>

<h3>2. Personal Data</h3>
<p>The application does not collect or process personal data such as names, emails, or IP addresses beyond what is
technically necessary for hosting the website.</p>

<h3>3. Cookies and Logs</h3>
<p>No cookies or tracking technologies are used in this demo project.
 Basic server logs may record requests for diagnostic purposes.
</p>
<h3>4. Disclaimer</h3>
<p>This site is a student project.
 Uploaded content may be deleted at any time and should not include sensitive or copyrighted material.
</p>

● Modify Privacy.cshtml page:

● Run again

13 / 30C# Lecture 4 Małgorzata Janik

Adding new page

Add a link to the Upload page into the layout (Pages/Shared/_Layout.cshtml):

Upload

● Add new Razor Page → „Upload”. Add it to the main menu (at the top)

– Project → Add new... → Razor Page...

● Run again Adding Upload page!

14 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – File upload
● Idea:

15 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – File upload
● Uploaded files should be saved in „uploads” folder (located in

wwwroot the project home folder)

16 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – File upload
● Idea:

17 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – File upload
● Idea:

● Add controls:

<input type="file" name="ImageFile" accept="image/*" />
– Creates a file input field.

– type="file" — opens the file picker window.

– name="ImageFile" — the field name used by ASP.NET Core to bind the uploaded file to the
corresponding property (public IFormFile? ImageFile { get; set; }).

– accept="image/*" — restricts file selection to images (jpg, png, gif, etc.).

File upload (opens window with file browser)

Status which displays information in
case of problems.

Button

18 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – File upload
● Idea:

● Add controls:

<button type="submit">Prześlij</button>
● Submits the form to the server when clicked.

● The browser sends an HTTP POST request to the same page (/Upload).

● On the server side, the OnPostAsync() method of the UploadModel class is executed.

File upload (opens window with file browser)

Status which displays information in
case of problems.

Button

19 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – File upload

Connect both controls in one form:

<form method="post" enctype="multipart/form-data">

 <input ...

 <button ...

</form>
● <form>...</form> - This tag wraps all the input fields. It tells the browser: “this is a set of

data to be sent to the server.”

● method="post" - Specifies how the data is sent to the server. POST means: send the data in
the body of the HTTP request (not in the URL). It’s typically used when sending files or
modifying data. In Razor Pages, this triggers the OnPost or OnPostAsync() method in the
corresponding .cshtml.cs file (in this case, Upload.cshtml.cs).

● enctype="multipart/form-data" - This defines the encoding type used when sending
data. It’s required when uploading files. It tells the browser to send the file as binary data in
separate parts of the HTTP request. If you used the default application/x-www-form-urlencoded,
only the file name would be sent — not the file itself..

<h2> header with some info</h2>

Test how it looks!

20 / 30C# Lecture 4 Małgorzata Janik

Upload file: model (C#)
● Model page

adds functonality
to the GUI we
defined.

● OnPostAsync()
will be called
when button is
clicked.

● ImageFile and
Message
properties allow
for exchange of
data with the
page.

 public class UploadModel : PageModel
 {
 [BindProperty]
 public IFormFile? ImageFile { get; set; }

 public string? Message { get; set; }

 public void OnGet() { }

 public async Task<IActionResult> OnPostAsync()
 {

 return Page();
 }
 }

21 / 30C# Lecture 4 Małgorzata Janik

Upload file: model (C#)
● Modify OnPostAsync method

– Check:
● If folder exists

– Get folder path+name:

 var uploadsFolder = Path.Combine(Directory.GetCurrentDirectory(),
"wwwroot", "uploads");

– Check if folder exists:

 Directory.Exists(uploadsFolder)
– If not, create folder:

 Directory.CreateDirectory(uploadsFolder);

22 / 30C# Lecture 4 Małgorzata Janik

Upload file: model (C#)
● IModify OnPostAsync method

– Create new name for the uploaded file:
● We want the name to be unique (if client uploades two

files with the same name, we want to be able to store
both)

● We have to change default file name: insert Guid
– NameOfFile.jpg → f47ac10b-58cc-4372-a567NameOfFile.jpg

● Useful methods:

ImageFile.FileName; → returns filename

var uniqeID = $"{Guid.NewGuid()}"; → creates a new unique identifier
(a Globally Unique Identifier)

Path.Combine(uploadsFolder, uniqeID + fileName) → „Path.Combine()” method
allows to create strings representing properly defined paths

Comes from Guid

You need to set correctly string filePath for the new (copied) file

23 / 30C# Lecture 4 Małgorzata Janik

Upload file: model (C#)
● If all is set: copy

the file!
 public class UploadModel : PageModel
 {
 [BindProperty]
 public IFormFile? ImageFile { get; set; }

 public string? Message { get; set; }

 public void OnGet() { }

 public async Task<IActionResult> OnPostAsync()
 {
 …..........

 using (var stream = System.IO.File.Create(filePath))
 {
 await ImageFile.CopyToAsync(stream);
 }

 Message = "Uploaded succsefully.";
return Page();

 }
 }

Test if copying works!
(check the folder)

24 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – File upload

● Add to the Razor page (after the form):

@if (Model.Message != null) {

 <p>@Model.Message</p>

}
● This is a Razor expression — it conditionally displays a message returned from the model, e.g.:

● “Upload successful” or “Error – please select a file.”

Status which displays information in
case of problems.

25 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – File upload
● Modify OnPostAsync method

– Check:
● Is image uploaded?

– ImageFile is not null and it's length is not 0
– If not, change Message to appropriate text.
– Remember to return Page(); after Message is set.

● If file type is one of the following: jpg / gif / png / webp?
 var allowed = new[] { ".jpg", ".jpeg", ".png", ".gif", ".webp" };

 var ext = Path.GetExtension(ImageFile.FileName).ToLowerInvariant();
 if (!allowed.Contains(ext)) { … }

– If not, write appropriate text in Message

● If file size is < 5 MB?

 ImageFile.Length > 5 * 1024 * 1024
– If not, write appropriate text in Message

Check if it works!

26 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – File upload
● Your stage now, but nothing displayed yet on the page:

27 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – Display Photos
● Change Index.cshtml.cs file:

 public List<string> Images { get; set; } = new();

 public void OnGet()

 {

 var uploads = Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "uploads");

 if (!Directory.Exists(uploads)) return;

 var files = Directory.GetFiles(uploads)

 .Select(Path.GetFileName)

 .Where(f => !string.IsNullOrEmpty(f))

 .OrderByDescending(f => f)

 .ToList();

 Images = files;

 }

28 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – Display Photos
● Change Index.cshtml file: add thumbnails of images for all photos

<div class="grid">

@foreach(var img in Model.Images)

{

 <div class="thumb">

 </div>

}

</div>

1. @foreach (var img in Model.Images)

● Loops through a collection called Images in your Razor page’s model.

2. <div class="thumb">

● Creates a container (usually styled with CSS) for a single image thumbnail.

3.

● Generates an tag whose src points to your wwwroot/uploads folder.

Test – photos should be displayed.

29 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery – Display Photos
● For now all photos are displayed in their original size - we want to

create small tumbnails of the same size. We will use css for that:

Create gallery.css file in the wwwroot/css/gallery.css.

Copy content of this simple css file:

http://www.if.pw.edu.pl/~majanik/data/Csharp/Files/gallery.css

● Add this line to the Index.cshtml

 <link rel="stylesheet" href="~/css/gallery.css" />

Try it!

http://www.if.pw.edu.pl/~majanik/data/Csharp/Files/gallery.css

30 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery
● After clicking a photo we would like it to be enlarged.

– Create a javascript for this task in wwwroot/js/lightbox.js. You can copy the contents:

https://www.if.pw.edu.pl/~majanik/data/Csharp/Files/lightbox.js

– Add an lightbox control at the bottom of Index.cshtml

<!-- Lightbox -->

<div id="lightbox" onclick="closeLightbox()" style="display:none;">

</div>

<script src="~/js/lightbox.js"></script>

– Add attribute to the img controls in foreach:

onclick="openLightbox('@Url.Content("~/uploads/" + img)')

https://www.if.pw.edu.pl/~majanik/data/Csharp/Files/lightbox.js

31 / 30C# Lecture 4 Małgorzata Janik

Tasks: Photo Gallery
● After clicking a photo we would like it to be enlarged.

– Effect:

KONIEC

dr hab. inż. Małgorzata Janik
malgorzata.janik@pw.edu.pl

	Slide1
	Slide 2
	Slide 3
	Slide6
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

