
Advanced ProgrammingAdvanced Programming
C#C#

Lecture 13

dr hab. inż. Małgorzata Janik
malgorzata.janik@pw.edu.pl

ProjectProject

3 / 24C#, Lecture 11

Project part III
● Final Date: 26.01.2020 (next weeks!)
● Presentations (max 5 min per project!):

– 1 poster/slide that advertises your project

– 1 slide listing implemented functionalities

– presentation of the program
● real-time presentation of the application

– to be shown to the whole group

● Code will be evaluated

– Project must be shared via git repository as well

– If application does not meet basic
requirements/functionality, the project is not graded

Programowanie Programowanie
asynchroniczneasynchroniczne

5 / 24C#, Lecture 11

Asynchroniczność w C# (async / await)
Jak wykonywać długie operacje bez blokowania interfejsu użytkownika?

(problem w aplikacjach okienkowych)

Aplikacje Windows Forms mają jeden główny wątek UI.

Ten wątek:

● rysuje okno

● obsługuje kliknięcia

● reaguje na użytkownika

Jeśli ten wątek zostanie zablokowany → aplikacja przestaje reagować.

6 / 24C#, Lecture 11

Idea asynchroniczności
Zamiast:

● „zatrzymaj program i czekaj”

chcemy:

● „zacznij operację i wróć do UI”

Asynchroniczność:

● oddaje sterowanie systemowi
● pozwala UI działać normalnie
● wraca do kodu, gdy operacja się zakończy

Słowa kluczowe: async i await

async:

→ oznacza metodę asynchroniczną

await:

 → czeka na zakończenie operacji, nie blokuje wątku UI

7 / 24C#, Lecture 11

Przykład async / await

Efekt:
● tekst pojawia się po 3 sekundach
● okno cały czas reaguje

await:
● zatrzymuje wykonanie metody
● zapisuje jej stan
● oddaje sterowanie UI
● wraca do metody po zakończeniu operacji

(To nie jest Sleep!)

private async void button1_Click(object sender, EventArgs e)
{
 await Task.Delay(3000);
 label1.Text = "Gotowe";
}

Co można „awaitować”?
Można użyć await dla metod zwracających:
● Task
● Task<T>

Przykłady:
● Task.Delay(...)
● ReadAllTextAsync(...)
● GetStringAsync(...)
● własne metody async

8 / 24C#, Lecture 11

Zadanie: Winda
Aplikacja Windows Forms przedstawia jedną windę obsługującą 5 pięter.

Użytkownik wybiera piętra za pomocą przycisków, a winda porusza się między nimi w
czasie, piętro po piętrze.

Kontrolki

● Panel panelShaft – szyb windy
● Panel panelElevator – sama winda (prostokąt)
● Label labelFloor – aktualne piętro
● 5 × Button – piętra 1–5

Układ:

● panelShaft wysoki, np. 300 px
● panelElevator wewnątrz, wysokość np. 40 px

9 / 24C#, Lecture 11

Zadanie: Winda
Aplikacja przedstawia jedną windę obsługującą 5 pięter.

Użytkownik wybiera piętra za pomocą przycisków, a winda porusza się między nimi w
czasie, piętro po piętrze.

Pola Form1:

● private int currentFloor = 1; //aktualne piętro
● private int targetFloor = 1; //piętro do którego jedzie
● private const int floorsCount = 5;
● private const int floorHeight = 60; // px na piętro

Ustawienie windy na odpowiednim miejscu:
private void UpdateUI()
{
 //Odśwież label „Aktualne piętro”

 // Liczymy pozycję windy
 int bottomOffset = ….. ;

 //Ustawiamy pozycję windy
 panelElevator.Top = panelShaft.Height -

panelElevator.Height - bottomOffset;
}

10 / 24C#, Lecture 11

Zadanie: Winda
Obsłuda przycisków:

Metoda
FloorButton_Click(object sender, EventArgs e)
wspólna dla wszystkich przycisków.

● Jak wyciągnąć który przycisk był naciśnięty?
Button button = sender as Button;

Powinna być/mieć:
● async
● Pobierać numer piętra z nazwy przycisku.
● Wywoływać metodę

MoveElevatorAsync(selectedFloor) w trybie await.

11 / 24C#, Lecture 11

Zadanie: Winda
Ruch windy (kluczowy fragment):

private async Task MoveElevatorAsync(int target)
{

...
}

Po kolei:
● Ustaw targetFloor.

Dopóki currentFloor != targetFloor:
● odczekaj 500 ms (Task.Delay)
● zwiększ lub zmniejsz currentFloor o 1
● UpdateUI()

To symuluje:
● ruch windy w czasie,
● przejazd piętro po piętrze.

12 / 24C#, Lecture 11

Zadanie: Winda
Dodanie zdarzenia zmiany piętra
(pozwala rozdzielić logikę i UI) zamiast obecnego wywoływania metody UpdateUI:

public event Action FloorChanged;

Metoda obsługująca zdarzenie FloorChanged to po
prostu UpdateUI (void, nie przyjmuje argumentów),
najlepiej zmienić jej nazwę na:

private void OnFloorChanged()

To jest jedyna metoda, która modyfikuje UI!

Subskrypcja w konstuktorze Form1:
FloorChanged += OnFloorChanged;

Wywołanie eventu:
FloorChanged?.Invoke();

13 / 24C#, Lecture 11

Zadanie: Winda

Możliwe rozszerzenia:
+ kolorowanie przycisków
+ kolejka pięter

THE END

Dr hab inż. Małgorzata Janik
malgorzata.janik@pw.edu.pl

Creating EXECreating EXE

16 / 24C#, Lecture 11

Creating EXE
● Click on the Project → Publish... → Folder → ClickOnce...

→ CD, DVD or USB... → Next → Next → Finish

● Publish

17 / 24C#, Lecture 11

Creating EXE
● With Installer extension:

https://www.youtube.com/watch?v=NOkBUoP54b8
● Simplest:

https://www.youtube.com/watch?v=rMr3ejOEiDY
– Click on the Project → Publish... → Folder →

Folder... → choose place to publish → Finish

https://www.youtube.com/watch?v=NOkBUoP54b8
https://www.youtube.com/watch?v=rMr3ejOEiDY

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

