Advanced Programming
C#

Lecture 11

b B - L1
R A

¥/ Y AW

=T E - 2 AR
0 Y A,

dr hab. inz. Matgorzata Janik

= ¥ T

LA - L

malgorzata.janik@pw.edu.pl

O LS.
o it R W &8

T
T TR o Y Y A
” =
i

I T T T AT o A SR TEET T
o s B P L

_—
O, SR S e
I e o R L TR W 0



4
O
D
e
-

al

WD

B

| e i -k
LV MRS ]
| 581 1
i
PR
w 44 ]

¥

W 7 il g T e PE S ——
W A ——— ——y 2 -

AR A AWy e AR

NN - G N SRS VN R SRR
(I 5 Y i & oo RETIIAR B
F o, e 7 ™ o L A S T -
AN AEET o oF TS 7E TR TR R R R

E!\_&.a(..;%;
FIUEEEE . B SRR ; [ 7
U1 RS AR T R
U0 AL WEEY AT EEEEST —
oD e PR o T

o o F < A




Project part |l
» Final Date: 26.01.2020 (two weeks!)

* Presentations (max 5 min per project!):

- 1 poster/slide that advertises your project
- 1 slide listing implemented functionalities

- presentation of the program
 real-time presentation of the application

- to be shown to the whole group
e Code will be evaluated

- Project must be shared via git repository as well

- If application does not meet basic
requirements/functionality, the project is not graded

‘ C#, Lecture 11 3/24 ‘



ing

O
(O
Q
-

c

=

=
-
=

Jul__.ﬂ e e
0
TR
| Sl
BAmE AR
__.W. .. E _—E__..
Tl
LA
WA
w \ __-
¥

ot ._ IR EIR T v ae R L
DN R — — m———
N CE— S
R
T e S
P LA S ———

R FR R —
R . o ARTI a—
o A/ B

A A HpixTiawh»ﬁi
A SR O e LR Y g._,

P B TR R
[oa8 i_!ﬁjmiﬂi
U0 AL WEEY AT EEEEST —
oD e PR o T




Threading in C#

» C# supports parallel execution of code through
multithreading.

 Athread is an independent execution path, able
to run simultaneously with other threads.

* A C# client program (Console, WPF, or
Windows Forms) starts in a single thread
created automatically by the CLR and operating
system (the “main” thread), and is made
multithreaded by creating additional threads.

. http://www.albahari.com/threading/
C#, Lecture 11 5/24




Threading: basics

class ThreadTest

{

static void Main()

{
Thread t = new Thread (WriteY); // Kick off a new thread

t.Start(); // running WriteY()

// Simultaneously, do something on the main thread.
for (int i = ©; i < 1000; i++) Console.Write ("x");

}

static void WriteY()

{
for (int i = 9; i < 1000; i++) Console.Write ("y");
}
}

XXXXRXXXXXXXXXXXXYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
XXXXXXXXXXX XXX XX XX XXXX XXX XXX XXX XXX XXXXXXYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYXXXXXXX XX XXX XXX XXX XXKX
XXXXXXXXX XX XX XXX XXXXXXYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
YYYYYYYYYYYYYXRXXXXXXKXKXXKXKRXKXKX KX XK KX XK KKK KX KXKKXKKK

‘ http://www.albahari.com/threading/
C#, Lecture 11 6/24




Threading: basics

class ThreadTest

{

static void Main()

{
Thread t = new Thread (WriteY): // Kick off a new thread

t.Start(); Main Thread

R a‘ R M e M A M M M N N N M M M N M MMM NN . v o e KM MM HEM
// Simultaneol &2
) . =) thread ends
for (int i = ¢ new application
} Thread time —m p
static void Wri Start() thread ends
{ =/ Y YYYYY YV Y Y Y VY YV YYYYYY VY YYYYYYYYYYYYYYYY ¢ o o o YYYYYYYYYYYYY

}fOl“ (int 1 = ¢ Worker Thread
}

XXXXRXXXXXXXXXXXXYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
XXXXXXXXXXX XXX XX XX XXXX XXX XXX XXX XXX XXXXXXYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYXXXXXXX XX XXX XXX XXX XXKX
XXXXXXXXX XX XX XXX XXXXXXYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
YYYYYYYYYYYYYXRXXXXXXKXKXXKXKRXKXKX KX XK KX XK KKK KX KXKKXKKK

‘ http://www.albahari.com/threading/
C#, Lecture 11 7124




How does it work?

* Multithreading is managed internally by a thread
scheduler, a function the CLR typically delegates to the
operating system.

* Athread scheduler ensures all active threads are
allocated appropriate execution time, and that threads
that are waiting or blocked do not consume CPU time.

- On a single-processor computer, a thread scheduler
performs time-slicing — rapidly switching execution
between each of the active threads.

- On a multi-processor computer, multithreading is
iImplemented with a mixture of time-slicing and genuine
concurrency, where different threads run code
simultaneously on different CPUs.

. http://www.albahari.com/threading/
C#, Lecture 11 8/24




Threads vs Processes

* Athread is analogous to the operating system
process in which your application runs.

- Just as processes run in parallel on a computer,
threads run in parallel within a single process.

* Processes are fully isolated from each other;
threads have just a limited degree of isolation.

http://www.albahari.com/threading/

' C#, Lecture 11 9/24 ‘



Creating and starting threads

 Threads are created using the Thread class’s
constructor, passing in a ThreadStart delegate
which indicates where execution should begin.

» Calling Start on the thread then sets it running.
The thread continues until its method returns, at
which point the thread ends.

* Creating threads:

static void Main() {

Thread t = new Thread (new ThreadStart (Go));

Thread t2 = new Thread (Go); //The same = just shorter syntax
t.Start(); // Run Go() on the new thread.

t2.Start();

}

static void Go()

{

Console.WriteLine ("hello!");

. } http://www.albahari.com/threading/
C#, Lecture 11 10/ 24




Task 1: Crating threads

* Create new Console Application.

* Write simple function

- public static void Increment()

which prints 10 numbers: 01234567 89 in a for
loop

 |n Main function:

- Create and start new threads t1 and t2 using both
methods (as in the example from previous slide)
that run Increment function.

- Run Increment() from the main thread.

- In the end of the program print ,Main thread at the
end” and wait for the key from the user

'C#, Lecture 11 1/24



Naming threads

« Each thread has a Name property that you can set for the
benefit of debugging. This is particularly useful in Visual Studio,
since the thread’s name is displayed in the Threads Window
and Debug Location toolbar. You can set a thread’s name just
once; attempts to change it later will throw an exception.

* The static Thread.CurrentThread property gives you the
currently executing thread. In the following example, we set the
main thread’s name:

class ThreadNaming

{

static void Main()

{
Thread.CurrentThread.Name = "main"”;
Thread worker = new Thread (Go);
worker.Name = "worker";
worker.Start();
Go();
}
static void Go()
{
Console.WriteLine ("Hello from " + Thread.CurrentThread.Name);
} http://www.albahari.com/threading/

'C#, Lectdre 11 12124



Task 2: Naming

 Name all the threads (including the main
thread) so that they are easily identifiable.

* In Increment method add information which
thread prints the number

- Do the same for the next task (Decrement)

'C#, Lecture 11 13/24



Passing data to a thread

* The easiest way to pass arguments to a thread’s target
method is to execute a lambda expression that calls the
method with the desired arguments:

Thread t = new Thread ( () => Print ("Hello from t!") );
t.Start();

* You can do the same thing almost as easily in C# 2.0 with
anonymous methods:

Thread t = new Thread (delegate()

{
Print ("Hello from t!");

});

t.Start();

http://www.albahari.com/threading/

'C#, Lecture 11 14124



Task 3: Threads with parameters

* Write simple Decrement function
- public static void Decrement(int max)

which prints numbers from max to 0 in a for loop

 |n Main function

- Create and start threads t3 and t4 which print
numbers from 5 to O (t3) and 10 to O (t4). Threads
should be created using both methods mentioned
on previous slide.

'C#, Lecture 11 15/24‘



Join and Sleep

* You can wait for another thread to end by calling its Join
method. For example:

This prints “y” 1,000 times,

static void Main() followed by “Thread t has

{ ended!” immediately
Thread t = new Thread (Go); afterward. You can include a
t.Start(); timeout when calling Join,
t.Join(); either in milliseconds or as a

Console.WriteLine ("Thread t has ended!"); TimeSpan. It then returns

) true if the thread ended or
static void Go() false if it timed out.
{
for (int i = 9; i < 1000; i++) Console.Write ("y");
Y

 Thread.Sleep pauses the current thread for a specified

period:
Thread.Sleep (TimeSpan.FromHours (1)); // sleep for 1 hour
Thread.Sleep (500); // sleep for 500 milliseconds

* While waiting on a Sleep or Join, a thread is blocked and
so does not consume CPU resources.
C#, Lecture 11 http://www.albahari.com/threading/ 16 / 24




Task 4: Join & Sleep

* |n the Increment method sleep for 10 ms after
printing each number.

» Using Join method order main thread to wait for
all the others (t1,t2,t3,14) at the end of the
program to finish.

‘C#, Lecture 11 17/24‘



ResetEvent

» By default threads die after they fulfilled their function
(when they encounter the end of function)

 All blocking methods (such as Sleep, Join, EndIinvoke, and
Wait) block forever if the unblocking condition is never met
and no timeout is specified. Occasionally, it can be useful
to release a blocked thread prematurely; for instance,
when ending an application.

* |In C#, if you have a thread that is blocked or waiting for
some condition to be satisfied, you can release it
prematurely using mechanisms such as
ManualResetEvent, AutoResetEvent, or
CancellationToken.

'C#, Lecture 11 18124



Synchronizing Threads

* Here's an example of releasing thread by using
ManualResetEvent:

// Create a ManualResetEvent to signal when the thread can proceed.
private static ManualResetEvent manualEvent = new ManualResetEvent(false);

public static void Main()

{
// Start a thread that is initially blocked.
Thread t = new Thread(DoWork);
t.Start();
// Simulate some condition where you want to release the blocked thread.
// In this example, we release the thread after 3 seconds.
Thread.Sleep(3000);
// Release the blocked thread by setting the ManualResetEvent.
manualEvent.Set();
// Wait for the thread to finish (optional).
t.Join();
}
private static void DoWork()
{
Console.WriteLine("Thread is waiting for the signal.");
// Wait for the signal to be set.
manualEvent.WaitOne();
// The thread will proceed when the signal is set.
Console.WriteLine("Thread is released and can continue its work.");
}

'C#, Lecture 11 19/24



Task 5: Release thread

* In the Decrement function add synchronization
handling.

- Add ManualResetEvent to the class.

- The ,Decrement” function should wait for the signal
to proceed.

e Release t3 and t4 Threads in the Main function
after it reaches the end.

'C#, Lecture 11 20/ 24



Locks

» Exclusive locking is used to ensure that only one thread
can enter particular sections of code at a time.

 Other threads wait untill the lock becomes available.

class ThreadSafe

{

static bool done;
static readonly object locker = new object();

static void Main()

{
new Thread (Go).Start();

Go();
}

static void Go()

{
lock (locker)

{

if (!done) { Console.WritelLine ("Done"); done = true; }

}
}
}

http://www.albahari.com/threading/

'C#, Lecture 11 21/24



Task 6: Locks

* Add to the program global variable
- static int GLOBAL_VALUE = 0;

* Increase GLOBAL VALUE by 1 in Increment function and
decrease by 1 in Decrement function (see next point)

 Change Increment and Decrement functions to increase a
chance of problems:

- Create int tmp = GLOBAL_VALUE; variable in the
beginning; increment/decrement it

- Rewrite GLOBAL_VALUE = tmp; in the end of the for
loop

* Print the GLOBAL_VALUE value at the end of the
program. Observe variations from number 5 when running
program.

e Add locks to deal with the created problem.

'C#, Lecture 11 22 /24



References

* Only one, but highly recommended:
- http://www.albahari.com/threading

'C#, Lecture 11 23/24


http://www.albahari.com/threading

_—

THE END

B ®
r [ -
“EEREF

RS AR
S

- -
11 ¥

o7
Y A )
R - 5 A

dr inz. Matgorzata Janik

i A

¢ o
e

I Y T G

malgorzata.janik@pw.edu.pl

ar

-
B
E.
E

="
» - -
e N - i

= F
F.
T A
F
et . T IF
B

AN

D

-
=
!
i i‘

I o LR R L TR W



LLJ
X
LLJ
o
-
S
©
v
-
O

Wy i __ | SIPT IR T v e Al
T AW L N AT W — P
Jhﬂ LY L Fis.. . EEEYE
e | (W 7 iy g S | ..1I_. BT
i Wl eV F e N
By AR A &ﬁ!.ri ,1 . AR
RS R L NN - - G SRR S N A S L
LSRR R ] (I 5 Y i A avanﬂ._,,mﬁ,ﬂ\.,__ B
i AT AT X = 7 ™ o L A S T -
T AT A TR Tiﬁﬁ»ﬁi

i e ST EEET N ¢ e ks g;

= | PR Bl SRR

[oa8 i.!ﬁ*iﬂi
U0 AL WEEY AT EEEEST —
oD e PR o T




Creating EXE

e Click on the Project — Publish... — Folder — ClickOnce...
— CD, DVD or USB... — Next — Next — Finish

e Publish

ClickOnceProfile.pubxml
Connected Services @ iceoneertotiie.pubxm & publish
ClickOnce

Publish

—+ New profile More actions ~

@ publish succeeded on 1/4/2024 at 3:21 PM.

Settings

Publish location bin\Publish\ [
Update enabled False

Manifests signed False
Configuration Release

Target Framework net6.0-windows
Target Runtime Portable

Show all

'C#, Lecture 11 26 /24



Creating EXE

e With Installer extension:
https://www.youtube.com/watch?v=NOkBUoP54b8

e Simplest:
https://www.youtube.com/watch?v=rMr3ejOEIDY

- Click on the Project — Publish... — Folder —
Folder... — choose place to publish — Finish

‘C#, Lecture 11

27124


https://www.youtube.com/watch?v=NOkBUoP54b8
https://www.youtube.com/watch?v=rMr3ejOEiDY

Abort

» By default threads die after they fulfilled their function
(when they encounter the end of function)

 All blocking methods (such as Sleep, Join, EndIinvoke, and
Wait) block forever if the unblocking condition is never met
and no timeout is specified. Occasionally, it can be useful
to release a blocked thread prematurely; for instance,
when ending an application. Two methods accomplish this:

- Thread.Interrupt (almost never needed)
- Thread.Abort

* A blocked thread can be forcibly released via its Abort
method. ThreadAbortException is thrown. Thread should
catch it in the try catch block.

 Program does not kill threads; it rather nicely asks (using
an exception) for a suicide.

'C#, Lecture 11 28 /24



Exceptions and threads

» Catching exceptions in threads should always
be handled inside the function the thread is
starting (certainly not outside)

public static void Main()

{
new Thread (Go).Start();
}

static void Go()

{
try

{

//normal thread execution

}

catch (Exception ex)

{
// Typically log the exception, and/or signal another thread
// that we've come unstucR

/]

}
}

‘ http://www.albahari.com/threading/ ‘
C#, Lecture 11 29/ 24




Task 5: Abort

* |In the Increment and Decrement function add
exception handling.

- In case of finding signal from Abort method thread
should print text ,Thread [name] Aborted!” and
finish.

- In case of other exceptions, program should print
the name of the exception.

 Abort t1 and t4 Threads in the Main function.

'C#, Lecture 11 30/ 24



	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

