C#
Lecture 11
dr inz. Matgorzata Janik
malgorzata.janik@pw.edu.pl
Winter Semester 2018/2019

)
-
=
=
(©
—
o
O
-
o
e
@
O
-
©
>
3
<

- O e L] _.1.Iw L

IS

" W WA 3 —————r = |
Ty B e A .ﬂh?& — R -
LR R ST A A “ — E gn ..

| S ™~ [- \ 3

12 A7 A Fis=

JEL Y AR A m,n|n..1. R

i G AR SEREET C F . el b

o BT . i o Euw R

(388 E_EE.EEI
B RO, TR L e iy T TG =

P T O Y BT T —

Project part Il
* Final Date: 21.01.2018 (in 2 weeks!)
* Presentations (max 5 min per project!):
- 1 poster/slide that advertises your project

- presentation of the program
* real-time presentation of the application

- to be shown to the whole group

e Code will be evaluated
- Project must be shared via git repository
- Each person from the team can get separate mark

— If application does not meet basic requirements from
the specification, the project is not graded

— Try out the ReSharper (see next slide) - (+1 pkt)

‘C#, Lecture 11 233

ReSharper

Try it for your projects!

ReSharp er part of ReSharper Ultimate

Extension f

¥ DOwWNLOAD

" Free 30- day trial

http://www.jetbrains.com/resharper/

'C#, Lecture 11 3/33

ReSharper

How ReSharper helps Visual Studio users

Q

Analyze code quality

On-the-fly code quality analysis is available
in C#, VB.NET, XAML, ASP.NET, ASP.NET
MVC, JavaScript, TypeScript, CSS, HTML,
and XML. You'll know right away if your
code needs to be improved.

Instantly traverse the entire solution

You can instantly navigate and search in
the whole solution. Jump to any file, type,
or type member, or navigate from a
specific symbol to its usages, base and
derived symbols, or implementations.

0

Enter

Eliminate errors and code smells

Not only does ReSharper warn you when
there's a problem in your code but it
provides hundreds of quick-fixes to solve
problems automatically. In most cases, you
can select the best quick-fix from a variety
of options.

%

Enjoy code editing helpers

Multiple code editing helpers include

extended IntelliSense, hundreds of instant
code transformations, auto-importing
namespaces, rearranging code and
displaying documentation.

f\.-..r»\“
O7

Lt

!

Safely change the code base

Automated solution-wide code
refactorings help safely change your code
base. Whether you need to revitalize
legacy code or put your project structure
in order, you can lean on ReSharper.

Comply to coding standards

Code style and formatting functionality
with fine-grained, language-specific
settings will help you get rid of unused
code and create a common coding
standard for your team.

C#, Lecture 11 4] 33

)
>
(G
C
-
<

7NN A = SN Wak!
‘f\ Pah_“-!.‘lu/dzl‘ll

N K.

W N W e /1) M

\ 2 LN ‘|.r‘—‘ “k‘\, ‘

] T e, — %

I (U W i g e IF T
TN Vi VTR ! = T sk
EAnw i Y is%!_. FivdF i . e
Lo L N A AR Y A AR B TR
&AL | ..&. ANEEF /. \ i ST BE—
i AT AR S F e 7 FiREEEATE e .o . HERE W
TS Y AR Al oF T T tl!whki
WA AT SRR CF L ol) gﬁ
L PO Wil EERRNE s

¥ (388 i.!ﬁéiﬁi

P T O Y BT T B R - o O SR o R - W e R T =

Arrays

* Declaring an array, the square brackets ([]) must
come after the type, not the identifier

- int[] table; // not int tablel];
e Size of the array Is not part of its type

- int[] numbers; // declare numbers as an int array of any size

- numbers = new 1nt[10]; // numbers is a 10-element array

- numbers = new 1nt[20]; // now it's a 20-element array

. https://msdn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx
C#, Lecture 11 6/33

Arrays declarations

* Single-dimensional arrays:
- 1nt[] numbers;

* Multidimensional arrays.:
- string[,] names;

* Array-of-arrays (jagged):
- byte[][] scores;

* Declaring them (as shown above) does not
actually create the arrays. In C#, arrays are
objects and must be instantiated.

https://msdn.microsoft.com/en-us/library/aa288453(v=vs./1).aspx

'C#, Lecture 11 7133

Creation of arrays

* Single-dimensional arrays:
- 1nt[] numbers = new 1int[5];

* Multidimensional arrays.:
- string[,] names = new string[5,4];
* Array-of-arrays (jagged):
byte[][] scores = new byte[5][];

for (int x = 0; X < scores.Length; x++)

{

scores[x] = new byte[4];

. https://msdn.microsoft.com/en-us/library/aa288453(v=vs./1).aspx
C#, Lecture 11 8/33

Arrays Examples

* You can have a three-dimensional rectangular
array:
- int[,,] buttons = new int[4,5,3];

* You can even mix rectangular and jagged
arrays. For example, the following code
declares a single-dimensional array of three-

dimensional arrays of two-dimensional arrays of
type int:

- int[][,,]1[,] numbers;

https://msdn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx

‘C#, Lecture 11 9/33

Initializing Arrays

* Single-Dimensional Array
- Int[] numbers = new Int[5] {1, 2, 3, 4, 5}

~ string[] names = new string[3] {"Matt", "Joanne”,
"Robert"};

* You can omit the size of the array, like this:
- Int[] numbers = new Int[] {1, 2, 3, 4, 5},

- string[] names = new string[] {"Matt", "Joanne",
"Robert"};

* You can also omit the new operator Iif an
initializer 1s provided, like this:

- Int[] numbers = {1, 2, 3, 4, 5},

— string|] namehs = I\/Iatt Jfoar?nf l_ Robert

C#, Lecture 11 | | | 16 | 33

Initializing Arrays

* Multidimensional Array
- 1int[,] numbers = new int[3, 2] { {1, 2}, {3, 4}, {5, 6} };

- string[,] siblings = new string[2, 2] { {"Mike", "Amy"},
{"Mary","Albert"} };

* You can omit the size of the array, like this:
- 1int[,] numbers = new int[,] { {1, 2}, {3, 4}, {5, 6} };

- string[,] siblings = new string[,] { {"Mike", "Amy"},
{"Mary","Albert"} };

* You can also omit the new operator if an
Initializer 1s provided, like this:
- int[,] numbers = { {1, 2}, {3, 4}, {5, 6} };
- string[,] siblings = { {"Mike", "Amy"}, {"Mary", "Albert"}

| Jmsdn.mi : en-us/li 22288453(v= ;
C#, Lecture 11 11/ 33

Initializing Arrays

» Jagged Array (Array-of-Arrays)

— Int[][] numbers = new Int[2][] { new Int[] {2,3,4}, new
int[] {5,6,7,8,9} },

* You can omit the size of the array, like this:

— 1int[][] numbers = new Int[|[] { new Int[] {2,3,4}, new
int[] {5,6,7,8,9} }

* You can also omit the new operator If an
initializer is provided, like this:

— Int[][] numbers = { new Int[] {2,3,4}, new Int[]
{5,6,7,8,9} };

| msdn.mi : en-us/li 22288453(v= ;
C#, Lecture 11 12/ 33

Accessing Array Members

* Accessing array members is straightforward and
similar to how you access array members in C/C++,

- int[] numbers = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1, O};
- numbers[4] = 5;

* Multidimensional array and assigns 5 to the member
located at [1, 1]:

- Int[,] numbers = { {1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10} };
- numbers|l, 1] = 5;
* Single-dimension jagged array:

— Int[][] numbers = new Int[][] { new Int[] {1, 2},
new int[] {3, 4, 5}};

- numbers|[1][1] =667, | .
https//midn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx
C#, Lecture 11 13/ 33

Arrays are Objects

* Length:
- Int[] numbers = {1, 2, 3, 4, 5},
— Int LengthOfNumbers = numbers.Length;

e foreach on Arrays
int[,] numbers = new int[3, 2] {{9, 99}, {3, 33}, {5, 55}};

foreach(int i in numbers)

{
Console.Write("{0} ", i);

}
— The output of this example is: 9 99 3 33 555

| Jmsdn.mi : en-us/li 22288453(v= ;
C#, Lecture 11 14 | 33

O
=
—

7NN A = SN Wak!
‘f\ Pah_“-!.‘lu/dzl‘ll

N K.

W N W e /1) M

\ 2 LN ‘|.r‘—‘ “k‘\, ‘

=Rl R LN A A— =

I (U W i g e IF T
TN Vi VTR ! = T sk
EAnw i Y is%!_. FivdF i . e
Lo L N A AR Y A AR B TR
&AL | ..&. ANEEF /. \ i ST BE—
i AT AR S F e 7 FiREEEATE e .o . HERE W
TS Y AR Al oF T T tl!whki
WA AT SRR CF L ol) gﬁ

L PO il L ORI NI :

¥ o8 e i.!ﬁ.ﬁtgi

P T O Y BT T B R - o O SR o R - W e R T =

LINQ

* LINQ — Language Integrated Query (pronounced
Jink™)

 NET Framework component that adds native data
guerying capabilities to .NET languages

* LINQ extends the language by the addition of query
expressions, which are similar to SQL statements

— can be used to conveniently extract and process
data from arrays, enumerable classes, XML
documents, relational databases, and third-party
data sources.

* LINQ was released as a major part of .NET
Framework 3.5 on November 19, 2007.

‘C#, Lecture 11 16 /33

LINQ Query

All LINQ query operations consist of three distinct
actions:

class IntroToLINQ

{

« Create the query. ?tatlc void Main()

« Execute the query. // The Three Parts of a LINQ Query:

// 1. Data source.

int[] numbers = new int[7] { O, 1, 2, 3, 4, 5, 6 };

* Obtain the data source.

// 2. Query creation.
// numQuery 1is an IEnumerable<int>
var numQuery =

from num in numbers

where (num % 2) ==

select num;

// 3. Query execution.
foreach (int num in numQuery)
{
Console.Write("{0,1} ", num);
¥
}
¥

In LINQ the execution of the query is distinct from the query itself; in other words you have not retrieved any data just
by creating a query variable.

'C#, Lecture 11 17133

LINQ Data Sources

* The basic rule is very simple: a LINQ data
source Is any object that supports the generic
IEnumerable<T> interface, or an interface that
inherits from it (e.g. IQueryable<T>).

— Collections: Arrays & Lists
string[] words = {"hello", "wonderful", "LINQ", "beautiful"};

- XML documents

// using System.Xml.Ling;
XElement contacts = XElement.Load(@"c:\myContactList.xml");

- Databases

Northwnd db = new Northwnd(@"c:\northwnd.mdf");

// Query for customers in London.

IQueryable<Customer> custQuery =

from cust in db.Customers where cust.City == "London" select cust;

More about IEnumerable interface:

'C#, Lecture 11 18133

https://msdn.microsoft.com/en-us/library/9eekhta0.aspx

Type returned from LINQ query

* From previous example ,var” type was used: we allow for
the compiler to decide on the type

* Actual type of selecting several int numbers from the table
would be collection IEnumerable<int>

e Similarly, for such query:

- var queryAllCustomers = from cust in customers select
cust;

actual type would be IEnumerable<Customer>

- If we use queries such as Count or Max the result will
be of type ,int”.

‘C#, Lecture 11 19/33

Query Execution

 Deferred Execution — query variable itself only stores the
guery commands. The actual execution of the query is
deferred until you iterate over the query variable in a
foreach statement.

* Forcing Immediate Execution — Queries that perform
aggregation functions over a range of source elements
must first iterate over those elements. Examples of such
gueries are Count, Max, Average, and First.

— These execute without an explicit foreach statement
because the guery itself must use foreach in order to
return a result. Note also that these types of queries
return a single value, not an IEnumerable collection.

- To force IiImmediate execution of any query and cache
Its results, you can call the ToList() or ToArray()
methods.

'C#, Lecture 11 20/33

Query Execution

e Deferred Execution foreach (int num in numQuery)

{
Console.Write("{O0,1} ", num);
}
* Forcing Immediate Execution
var evenNumQuery = List<int> numQuery2 =

(from num in numbers (from num in numbers
where (num % 2) == where (num % 2) ==
select num).Count(); select num).TolList();

var numQuery3 =
(from num in numbers
where (num % 2) ==
select num).ToArray();

'C#, Lecture 11 21/33

LINQ Query

All LINQ query operations consist of three distinct
actions:

* Obtain the data source.
class IntroToLINQ

* Create the query. {
static void Main()
* Execute the query. {

// The Three Parts of a LINQ Query:

// 1. Data source.

int[] numbers = new int[7] { 0, 1, 2, 3, 4, 5,

6 };
You can use any .
name you choose any name // 2. Query creation. _
for the query as Query 1is an IEnumerable<int>
well as for the var numQuery =
iterator. /:’;g?num in numbers
ere (num % 2) ==
Good practice is to any name select num;
use a name that is :
easily readable by 4érzécgufixteﬁﬁéuiﬁozﬁmQuer)
anybody. { y
Console.Write("{0,1} ", num);
¥
}

In LINQ the execution of the query is distinct from tge query itself; in other words you have not retrieved any data just
_by creating a query variable.

C#, Lecture 11 2233

Y4
©
—

7NN A = SN Wak!
‘f\ Pah_“-!.‘lu/dzl‘ll

N K.

W N W e /1) M

\ 2 LN ‘|.r‘—‘ “k‘\, ‘

=Rl R LN A A— =

I (U W i g e IF T
TN Vi VTR ! = T sk
EAnw i Y is%!_. FivdF i . e
Lo L N A AR Y A AR B TR
&AL | ..&. ANEEF /. \ i ST BE—
i AT AR S F e 7 FiREEEATE e .o . HERE W
TS Y AR Al oF T T tl!whki
WA AT SRR CF L ol) gﬁ

L PO il L ORI NI :

¥ o8 e i.!ﬁ.ﬁtgi

P T O Y BT T B R - o O SR o R - W e R T =

Prerequisites

* Download School.cs class from:
- http://lwww.if.pw.edu.pl/~majanik/data/Csharp/School.cs

* Create a Console Application

* |n the beginning of the program create single
School object. Use in as your collection.

 Complete next 8 tasks. Each task should be
proceeded by

comment

'C#, Lecture 11 24133

http://www.if.pw.edu.pl/~majanik/data/Csharp/School.cs

Task O: arrays

* Create 1 dimenstional array for 10 integers. Fill it with random
numbers 0-99.

* Print array on the screen.
* Write a LINQ query that will count number of all elements in the array.

* Write a LINQ query that will count number of even elements in the
array.

* Write a LINQ query that will return list of odd elements in the array.
* Print results of all the queries.

 Create 2D array (10 x 5). Fill in with random numbers. Print it on the
screen.

'C#, Lecture 11 2533

Filtering

"+ The most common guery operation is to apply a filter in the form
of a Boolean expression

* The filter causes the query to return only those elements for
which the expression is true

- Example:

var queryEnglandCustomers =
from cust in customers
where cust.Country == "England"
select cust;

 You can combine multiple Boolean conditions in the where
clause in order to further refine a query. The following code
adds a condition so that the query returns those pupiles whose
first mark was over 4 and whose last mark was less than 3.5.

where pupil.Marks[0] > 4 && pupil.Marks[3] < 3.5

« Task 1: write a LINQ query to extract all students in the school from Seattle or
Warsaw. Print them on the screen. Write second query, that will count number of
such students. Print the number on the screen.

'C#, Lecture 11 26 /33

Sorting

e Often It Is convenient to sort the returned data.

* The orderby clause will cause the elements In
the returned sequence to be sorted according
to the default comparer

- Example:

var queryEnglandCustomersOrder =
from cust in customers
where cust.City == "England"
orderby cust.Name ascending
//descending
select cust;

« Task 2: write a LINQ query to extract all
students in the school from Seattle or Warsaw
who are sorted by their last name. Print them
on the screen.

'C#, Lecture 11 27133

Grouping

* The group clause enables you to group your
results based on a key that you specify.

- Example:

/I queryCustomersByCountry is an IEnumerable<iGrouping<string, Customer>>
var queryCustomersByCountry =

from cust in customers

group cust by cust.Country;

I/l customerGroup is an IGrouping<string, Customer>
foreach (var customerGroup in queryCustomersByCountry)

{
Console.WriteLine(customerGroup.Key);
foreach (Customer customer in customerGroup)
{
Console.WriteLine(" {0}", customer.Name);
}
}

e Task 3: write a LINQ query that will write the
names of the students (first & last) grouped by
the city

'C#, Lecture 11 28 /33

Joining multiple inputs into one output

class Pet

{
o .(:()|1(:Elt() public string Name { get; set; }

public int Age { get; set; }

* You can use a LINQ query to !
create an output sequence that sratic petl] GetCats()
contains elements from more Pet[] cats = { new Pet { Name="Barley", Age=8
than one Input sequence. The & new Pet { Name="Boots", Age=4 } };
following example shows how to ~ , ™™™ <@t
combine two Iin-memory data
Str:UCj[UfeS, but the _ Same Pet[] dogs = { new Pet { Name="Bounder",
principles can be applied to age=31, “ “
combine data from XML or SQL return dogss | L ameT SNy, AgeTid 1

or DataSet sources.)
public static void ConcatEx1()

« Task 4: write a LINQ query that ©
will return the collection all of Pet[] dogs
students & teachers (IaSt names IEnumerable<string> query =

(from cat in cats select cat.Name)

Only) that Iive in WarsaW. .Concat(from dog in dogs select dog.Name);

static Pet[] GetDogs()

GetCats();
GetDogs();

foreach (string name in query)

{ Console.Writeline(name) :

} /I This code produces the following output:
} /I Barley
// Boots
/l Bounder

'C#, Lecture 11 /I Snoopy

Selecting subset of each Source Element

* There are 2 primary ways to select a subset of
each element in the source seguence:

- To select just one member of the source element,
use the dot operation.

e var query = from cust in Customers select cust.City;

- To create elements that contain more than one
property from the source element, you can use an
object Initializer with either a named object or an

anonymous type.
* var query = from cust in Customer
select new {Name = cust.Name, City = cust.City};

- Task 5: write a LINQ query that returns all students
& teachers from Warsaw and creates anonymus
type that includes both first & last names.

'C#, Lecture 11 30/33

Lambda syntax

* |Instead of
- from person in Data.People select person.lLastName;

we can write:
- Data.People.Select(p => p.LastName);

* Lambda syntax is more concise, however some operations
(i.e. multiple table joins) is very complicated.

 There are a number of LINQ operations that only exist
within the Lambda syntax: Single(), First(), Count() etc.

SomeDataContext dc = new SomeDataContext();

var queue = from q in dc.SomeTable var queue2 = dc.SomeTable
where q.SomeDate <= DateTime.Now && q.Locked != true Where(q => q.SomeDate <= DateTime.Now && g.Locked !=
orderby (q.Priority, q.TimeCreated) true) . | | | |
select q;
q .0rderBy(q => qg.Priority)

.ThenBy(gq => q.TimeCreated);

* Task 6: rewrite Task 1 & Task 4 with lambda syntax.

'C#, Lecture 11 31/33

Transforming iIn-Memory Objects into XML

* Task 7: try implementing example below to see
how to create XML file from collection using
LINQ.

// Create the query.
var studentsToXML = new XElement("Root",
from student in students
let x = String.Format("{0},{1},{2},{3}", student.Scores[0],
student.Scores[1], student.Scores[2], student.Scores[3])
select new XElement("student",
new XElement("First", student.First),
new XElement("Last", student.Last),
new XElement("Scores", x)
) // end "student"

); // end "Root"

/| Execute the query.

Console.WritelLine(studentsToXML);

'C#, Lecture 11 32/33

Additional

* LINQ Quiz:

* LINQ Myths:

'C#, Lecture 11 33/33

http://www.albahari.com/nutshell/linqquiz.aspx
http://www.albahari.com/nutshell/10linqmyths.aspx

References
* Getting Started with LINQ In C#

— Introduction to LINQ Queries (C#)

— LINQ and Generic Types (C#)

— Basic LINQ Query Operations

- Data Transformations with LINQ (C#)

— Type Relationships in LINQ Query Operations
- Query Syntax and Method Syntax in LINQ

— C# Features That Support LINQ

- Walkthrough: Writing Queries in C#

- Step-by-step instructions for creating a C# LINQ project, adding a
simple data source, and performing some basic query operations.

e C#: ZROZUMIEC LINQ

'C#, Lecture 11 34/33

https://msdn.microsoft.com/en-US/library/bb397933.aspx
http://itcraftsman.pl/zrozumiec-linq/

THE END

dr inz. Matgorzata Janik

E
-
i®)
e.
=
o
®
—
C
Rk
(S
-
)
N
-
O
o0
(qV]
&

____ __- .\%!1 \wn.l,:..li i a-.r T

I W

B e A

¢ m—— —

..__..a St 1

J a.i L ‘.‘ — E ul

3 ..
!-I_: i.!ﬁ.ﬁiﬁi
B RO, TR L e iy T TG =

P T O Y BT T —

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

