
Advanced ProgrammingAdvanced Programming
C#C#

Lecture 11

dr inż. Małgorzata Janik

malgorzata.janik@pw.edu.pl

Winter Semester 2018/2019

2 / 33C#, Lecture 11

Project part III
● Final Date: 21.01.2018 (in 2 weeks!)

● Presentations (max 5 min per project!):
– 1 poster/slide that advertises your project
– presentation of the program

● real-time presentation of the application
– to be shown to the whole group

● Code will be evaluated
– Project must be shared via git repository
– Each person from the team can get separate mark
– If application does not meet basic requirements from

the specification, the project is not graded
– Try out the ReSharper (see next slide)→ (+1 pkt)

3 / 33C#, Lecture 11

ReSharper

http://www.jetbrains.com/resharper/

Try it for your projects!

4 / 33C#, Lecture 11

ReSharper

ArraysArrays

6 / 33C#, Lecture 11

Arrays
● Declaring an array, the square brackets ([]) must

come after the type, not the identifier
– int[] table; // not int table[];

● Size of the array is not part of its type
– int[] numbers; // declare numbers as an int array of any size

– numbers = new int[10]; // numbers is a 10-element array

– numbers = new int[20]; // now it's a 20-element array

https://msdn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx

7 / 33C#, Lecture 11

Arrays declarations
● Single-dimensional arrays:

– int[] numbers;

● Multidimensional arrays:
– string[,] names;

● Array-of-arrays (jagged):
– byte[][] scores;

● Declaring them (as shown above) does not
actually create the arrays. In C#, arrays are
objects and must be instantiated.

https://msdn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx

8 / 33C#, Lecture 11

Creation of arrays
● Single-dimensional arrays:

– int[] numbers = new int[5];

● Multidimensional arrays:
– string[,] names = new string[5,4];

● Array-of-arrays (jagged):
byte[][] scores = new byte[5][];

for (int x = 0; x < scores.Length; x++)

{

 scores[x] = new byte[4];

}

https://msdn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx

9 / 33C#, Lecture 11

Arrays Examples
● You can have a three-dimensional rectangular

array:
– int[,,] buttons = new int[4,5,3];

● You can even mix rectangular and jagged
arrays. For example, the following code
declares a single-dimensional array of three-
dimensional arrays of two-dimensional arrays of
type int:
– int[][,,][,] numbers;

https://msdn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx

10 / 33C#, Lecture 11

Initializing Arrays
● Single-Dimensional Array

– int[] numbers = new int[5] {1, 2, 3, 4, 5};
– string[] names = new string[3] {"Matt", "Joanne",

"Robert"};

● You can omit the size of the array, like this:
– int[] numbers = new int[] {1, 2, 3, 4, 5};
– string[] names = new string[] {"Matt", "Joanne",

"Robert"};

● You can also omit the new operator if an
initializer is provided, like this:
– int[] numbers = {1, 2, 3, 4, 5};
– string[] names = {"Matt", "Joanne", "Robert"};

https://msdn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx

11 / 33C#, Lecture 11

Initializing Arrays
● Multidimensional Array

– int[,] numbers = new int[3, 2] { {1, 2}, {3, 4}, {5, 6} };

– string[,] siblings = new string[2, 2] { {"Mike","Amy"},
{"Mary","Albert"} };

● You can omit the size of the array, like this:
– int[,] numbers = new int[,] { {1, 2}, {3, 4}, {5, 6} };

– string[,] siblings = new string[,] { {"Mike","Amy"},
{"Mary","Albert"} };

● You can also omit the new operator if an
initializer is provided, like this:
– int[,] numbers = { {1, 2}, {3, 4}, {5, 6} };

– string[,] siblings = { {"Mike", "Amy"}, {"Mary", "Albert"}

https://msdn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx

12 / 33C#, Lecture 11

Initializing Arrays
● Jagged Array (Array-of-Arrays)

– int[][] numbers = new int[2][] { new int[] {2,3,4}, new
int[] {5,6,7,8,9} };

● You can omit the size of the array, like this:
– iint[][] numbers = new int[][] { new int[] {2,3,4}, new

int[] {5,6,7,8,9} };

● You can also omit the new operator if an
initializer is provided, like this:
– int[][] numbers = { new int[] {2,3,4}, new int[]

{5,6,7,8,9} };

https://msdn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx

13 / 33C#, Lecture 11

Accessing Array Members
● Accessing array members is straightforward and

similar to how you access array members in C/C++.
– int[] numbers = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
– numbers[4] = 5;

● Multidimensional array and assigns 5 to the member
located at [1, 1]:
– int[,] numbers = { {1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10} };
– numbers[1, 1] = 5;

● Single-dimension jagged array:
– int[][] numbers = new int[][] { new int[] {1, 2},

new int[] {3, 4, 5}};
– numbers[1][1] = 667;

https://msdn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx

14 / 33C#, Lecture 11

Arrays are Objects
● Length:

– int[] numbers = {1, 2, 3, 4, 5};
– int LengthOfNumbers = numbers.Length;

● foreach on Arrays
int[,] numbers = new int[3, 2] {{9, 99}, {3, 33}, {5, 55}};

foreach(int i in numbers)

{

 Console.Write("{0} ", i);

}

– The output of this example is: 9 99 3 33 5 55

https://msdn.microsoft.com/en-us/library/aa288453(v=vs.71).aspx

LINQLINQ

16 / 33C#, Lecture 11

LINQ
● LINQ – Language Integrated Query (pronounced

„link”)
● .NET Framework component that adds native data

querying capabilities to .NET languages
● LINQ extends the language by the addition of query

expressions, which are similar to SQL statements
– can be used to conveniently extract and process

data from arrays, enumerable classes, XML
documents, relational databases, and third-party
data sources.

● LINQ was released as a major part of .NET
Framework 3.5 on November 19, 2007.

17 / 33C#, Lecture 11

LINQ Query

 class IntroToLINQ
 {
 static void Main()
 {
 // The Three Parts of a LINQ Query:
 // 1. Data source.
 int[] numbers = new int[7] { 0, 1, 2, 3, 4, 5, 6 };

 // 2. Query creation.
 // numQuery is an IEnumerable<int>
 var numQuery =
 from num in numbers
 where (num % 2) == 0
 select num;

 // 3. Query execution.
 foreach (int num in numQuery)
 {
 Console.Write("{0,1} ", num);
 }
 }
 }

All LINQ query operations consist of three distinct
actions:

● Obtain the data source.

● Create the query.

● Execute the query.

In LINQ the execution of the query is distinct from the query itself; in other words you have not retrieved any data just
by creating a query variable.

18 / 33C#, Lecture 11

LINQ Data Sources
● The basic rule is very simple: a LINQ data

source is any object that supports the generic
IEnumerable<T> interface, or an interface that
inherits from it (e.g. IQueryable<T>).
– Collections: Arrays & Lists

string[] words = {"hello", "wonderful", "LINQ", "beautiful"};

– XML documents

– Databases

// using System.Xml.Linq;
XElement contacts = XElement.Load(@"c:\myContactList.xml");

Northwnd db = new Northwnd(@"c:\northwnd.mdf");
// Query for customers in London.
IQueryable<Customer> custQuery =
from cust in db.Customers where cust.City == "London" select cust;

More about IEnumerable interface:
https://msdn.microsoft.com/en-us/library/9eekhta0.aspx

https://msdn.microsoft.com/en-us/library/9eekhta0.aspx

19 / 33C#, Lecture 11

Type returned from LINQ query
● From previous example „var” type was used: we allow for

the compiler to decide on the type

● Actual type of selecting several int numbers from the table
would be collection IEnumerable<int>

● Similarly, for such query:
– var queryAllCustomers = from cust in customers select

cust;

actual type would be IEnumerable<Customer>

– If we use queries such as Count or Max the result will
be of type „int”.

20 / 33C#, Lecture 11

Query Execution
● Deferred Execution – query variable itself only stores the

query commands. The actual execution of the query is
deferred until you iterate over the query variable in a
foreach statement.

● Forcing Immediate Execution – Queries that perform
aggregation functions over a range of source elements
must first iterate over those elements. Examples of such
queries are Count, Max, Average, and First.
– These execute without an explicit foreach statement

because the query itself must use foreach in order to
return a result. Note also that these types of queries
return a single value, not an IEnumerable collection.

– To force immediate execution of any query and cache
its results, you can call the ToList() or ToArray()
methods.

21 / 33C#, Lecture 11

Query Execution
● Deferred Execution

● Forcing Immediate Execution

foreach (int num in numQuery)
{
 Console.Write("{0,1} ", num);
}

 var evenNumQuery =
 (from num in numbers
 where (num % 2) == 0
 select num).Count();

 List<int> numQuery2 =
 (from num in numbers
 where (num % 2) == 0
 select num).ToList();

 var numQuery3 =
 (from num in numbers
 where (num % 2) == 0
 select num).ToArray();

22 / 33C#, Lecture 11

LINQ Query

 class IntroToLINQ
 {
 static void Main()
 {
 // The Three Parts of a LINQ Query:
 // 1. Data source.
 int[] numbers = new int[7] { 0, 1, 2, 3, 4, 5,
6 };

 // 2. Query creation.
 // numQuery is an IEnumerable<int>
 var numQuery =
 from num in numbers
 where (num % 2) == 0
 select num;

 // 3. Query execution.
 foreach (int num in numQuery)
 {
 Console.Write("{0,1} ", num);
 }
 }
 }

All LINQ query operations consist of three distinct
actions:

● Obtain the data source.

● Create the query.

● Execute the query.

In LINQ the execution of the query is distinct from the query itself; in other words you have not retrieved any data just
by creating a query variable.

any name

any name
You can use any
name you choose
for the query as
well as for the
iterator.

Good practice is to
use a name that is
easily readable by
anybody.

TaskTask

24 / 33C#, Lecture 11

Prerequisites
● Download School.cs class from:

– http://www.if.pw.edu.pl/~majanik/data/Csharp/School.cs

● Create a Console Application
● In the beginning of the program create single

School object. Use in as your collection.
● Complete next 8 tasks. Each task should be

proceeded by

//****** Task [put number] *******

comment

http://www.if.pw.edu.pl/~majanik/data/Csharp/School.cs

25 / 33C#, Lecture 11

Task 0: arrays
● Create 1 dimenstional array for 10 integers. Fill it with random

numbers 0-99.

● Print array on the screen.

● Write a LINQ query that will count number of all elements in the array.

● Write a LINQ query that will count number of even elements in the
array.

● Write a LINQ query that will return list of odd elements in the array.

● Print results of all the queries.

● Create 2D array (10 x 5). Fill in with random numbers. Print it on the
screen.

26 / 33C#, Lecture 11

Filtering
● The most common query operation is to apply a filter in the form

of a Boolean expression

● The filter causes the query to return only those elements for
which the expression is true
– Example:

● You can combine multiple Boolean conditions in the where
clause in order to further refine a query. The following code
adds a condition so that the query returns those pupiles whose
first mark was over 4 and whose last mark was less than 3.5.

● Task 1: write a LINQ query to extract all students in the school from Seattle or
Warsaw. Print them on the screen. Write second query, that will count number of
such students. Print the number on the screen.

var queryEnglandCustomers =
from cust in customers
where cust.Country == "England"
select cust;

where pupil.Marks[0] > 4 && pupil.Marks[3] < 3.5

27 / 33C#, Lecture 11

Sorting
● Often it is convenient to sort the returned data.
● The orderby clause will cause the elements in

the returned sequence to be sorted according
to the default comparer
– Example:

● Task 2: write a LINQ query to extract all
students in the school from Seattle or Warsaw
who are sorted by their last name. Print them
on the screen.

 var queryEnglandCustomersOrder =
 from cust in customers
 where cust.City == "England"
 orderby cust.Name ascending
//descending
 select cust;

28 / 33C#, Lecture 11

Grouping
● The group clause enables you to group your

results based on a key that you specify.
– Example:

● Task 3: write a LINQ query that will write the
names of the students (first & last) grouped by
the city

// queryCustomersByCountry is an IEnumerable<IGrouping<string, Customer>>
var queryCustomersByCountry =

from cust in customers
group cust by cust.Country;

// customerGroup is an IGrouping<string, Customer>
foreach (var customerGroup in queryCustomersByCountry)
{

Console.WriteLine(customerGroup.Key);
foreach (Customer customer in customerGroup)
{

 Console.WriteLine(" {0}", customer.Name);
}

}

29 / 33C#, Lecture 11

Joining multiple inputs into one output
● .Concat()

● You can use a LINQ query to
create an output sequence that
contains elements from more
than one input sequence. The
following example shows how to
combine two in-memory data
structures, but the same
principles can be applied to
combine data from XML or SQL
or DataSet sources.

● Task 4: write a LINQ query that
will return the collection all of
students & teachers (last names
only) that live in Warsaw.

class Pet
{
 public string Name { get; set; }
 public int Age { get; set; }
}

static Pet[] GetCats()
{
 Pet[] cats = { new Pet { Name="Barley", Age=8
},
 new Pet { Name="Boots", Age=4 } };
 return cats;
}

static Pet[] GetDogs()
{
 Pet[] dogs = { new Pet { Name="Bounder",
Age=3 },
 new Pet { Name="Snoopy", Age=14 }};
 return dogs;
}

public static void ConcatEx1()
{
 Pet[] cats = GetCats();
 Pet[] dogs = GetDogs();

 IEnumerable<string> query =
 (from cat in cats select cat.Name)

.Concat(from dog in dogs select dog.Name);

 foreach (string name in query)
 {
 Console.WriteLine(name);
 }
}

// This code produces the following output:
// Barley
// Boots
// Bounder
// Snoopy

30 / 33C#, Lecture 11

Selecting subset of each Source Element
● There are 2 primary ways to select a subset of

each element in the source sequence:
– To select just one member of the source element,

use the dot operation.
● var query = from cust in Customers select cust.City;

– To create elements that contain more than one
property from the source element, you can use an
object initializer with either a named object or an
anonymous type.

● var query = from cust in Customer

 select new {Name = cust.Name, City = cust.City};

– Task 5: write a LINQ query that returns all students
& teachers from Warsaw and creates anonymus
type that includes both first & last names.

31 / 33C#, Lecture 11

Lambda syntax
● Instead of

– from person in Data.People select person.LastName;

we can write:
– Data.People.Select(p => p.LastName);

● Lambda syntax is more concise, however some operations
(i.e. multiple table joins) is very complicated.

● There are a number of LINQ operations that only exist
within the Lambda syntax: Single(), First(), Count() etc.

● Task 6: rewrite Task 1 & Task 4 with lambda syntax.

SomeDataContext dc = new SomeDataContext();

var queue = from q in dc.SomeTable

 where q.SomeDate <= DateTime.Now && q.Locked != true
 orderby (q.Priority, q.TimeCreated)
 select q;

var queue2 = dc.SomeTable

 .Where(q => q.SomeDate <= DateTime.Now && q.Locked !=
true)

 .OrderBy(q => q.Priority)
 .ThenBy(q => q.TimeCreated);

32 / 33C#, Lecture 11

Transforming in-Memory Objects into XML
● Task 7: try implementing example below to see

how to create XML file from collection using
LINQ.

// Create the query.

 var studentsToXML = new XElement("Root",

 from student in students
 let x = String.Format("{0},{1},{2},{3}", student.Scores[0],

 student.Scores[1], student.Scores[2], student.Scores[3])

 select new XElement("student",

 new XElement("First", student.First),

 new XElement("Last", student.Last),

 new XElement("Scores", x)

) // end "student"

); // end "Root"

 // Execute the query.

 Console.WriteLine(studentsToXML);

33 / 33C#, Lecture 11

Additional
● LINQ Quiz:

– http://www.albahari.com/nutshell/linqquiz.aspx

● LINQ Myths:
– http://www.albahari.com/nutshell/10linqmyths.aspx

http://www.albahari.com/nutshell/linqquiz.aspx
http://www.albahari.com/nutshell/10linqmyths.aspx

34 / 33C#, Lecture 11

References
● Getting Started with LINQ in C#

https://msdn.microsoft.com/en-US/library/bb397933.aspx

– Introduction to LINQ Queries (C#)

– LINQ and Generic Types (C#)

– Basic LINQ Query Operations

– Data Transformations with LINQ (C#)

– Type Relationships in LINQ Query Operations

– Query Syntax and Method Syntax in LINQ

– C# Features That Support LINQ

– Walkthrough: Writing Queries in C#

– Step-by-step instructions for creating a C# LINQ project, adding a
simple data source, and performing some basic query operations.

● C#: ZROZUMIEĆ LINQ
http://itcraftsman.pl/zrozumiec-linq/

https://msdn.microsoft.com/en-US/library/bb397933.aspx
http://itcraftsman.pl/zrozumiec-linq/

THE END

dr inż. Małgorzata Janik

malgorzata.janik@pw.edu.pl

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

