
Spontaneously broken symmetries in nuclear system - are there any?

Spontaneous symmetry breaking in QFT (global symmetry):

-
charge

- symmetry of Lagrangian

- Lagrangian



Quantum mechanics of a system with finite number of degrees of freedom

- Hamiltonian

In both cases the exact ground state will be symmetric (ie. NO 
SSB)

If we perform some kind of approximation, eg. mean 
field:

I II

- in the case I:  ground state is symmetric
- in the case II: two nonsymmetric degenerate ground states:

BUT

are again symmetric!

In a system with finite number of degrees of freedom there is no mechanism which prevent
of taking the solution in the form (*), since the tunneling probability is always nonzero!
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EXAMPLE:   Harmonic one dimensional crystal

- Hamiltonian (N particles)

Bogolubov transformation:

where:

H
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HOWEVER!

Bogolubov transformation                                                            is ill-defined for k=0

Hence the case: k=0, has to be treated separately.

In terms of original operators it has the form:

,  where

Clearly: [𝐻𝑐𝑜𝑙𝑙 , 𝐻𝑘≠0] = 0

The collective part represents the motion of the system as a whole.

The eigenenergies of the collective Hamiltonian scale like 1/N – nearly degenerate
in thermodynamic limit.

These states are thermodynamically invisible, since:



Let us consider a small (translational symmetry breaking) perturbation of the collective Hamiltonian:

B – small perturbation

The ground state wave packet becomes completely localized at x0=0 in thermodynamic limit

The sign of the existence of the Spontaneous 
Symmetry Breaking (SSB) effect is indicated by the 
noncommutativity of these limits.

The system is unstable (in the thermodynamic limit) 
with respect to an infinitely weak perturbation.

Order parameter:

The new ground state is effectively made up of states with total momenta:

totp N



Summarizing:

- In quantum systems the SSB occurs as a result of instability of the system with respect
to an infinitely small external perturbation, which break the symmetry of the original Hamiltonian.

- The SSB gives rise to the set of vacua, each defining its own Hilbert space.
These spaces cannot be connected by any local operator.
In our example each Hilbert space is associated with a particular localization of the whole
crystal.

- Physically it means that the tunneling between vacua vanishes in the thermodynamic limit,
since it behaves as:   exp(-N), or exp(-V). Hence, one cannot restore the symmetry by taking
linear combination of all vacua.

- In other words, this is due to an infinite „stiffness” of the many-body wave function
in the thermodynamic limit. For example the overlap between a slightly perturbed
Slater determinants describing N fermions behaves like:

(orthogonality catastrophe)

This effect gives rise to the stability of the SSB configuration

(0) ( ) N    



Spontaneous Symmetry Breaking and quantum decoherence
(Can we have SSB in finite systems?)

The possible source of the symmetry breaking field which causes the SSB can be
associated with the measurement process.

Quantum object in the SSB 
state

observe
r

probe



Let us denote the states of the quantum object as:

Let us denote the states of the probe as:

The total state of the system initially in the state:

i=1,2

Due to the measurement process the coherence between states 1 and 2 is lost:

Before 
measurement

After 
measurement

The measurement process destroys the coherence between various
SSB vacua and picks only one.

Conditions: - the time of the measurement (interaction of the probe with the quantum system)
is much shorter than the tunneling rate between various vacua.

- the resolution of the probe (e.g. wavelength of the gamma ray) should allow
to distinguish between various SSB vacua.
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Enhanced stability of the SSB vacuum due to the measurement process

Let us assume we perform s measurement at time:              picking either the state 1 or 2.
Subsequently the density matrix will evolve:  

Suppose we have two level system with eigenstates:

separated by the energy:

where

Hence the state of the system will loose the original property after the time

T is supposed to be very large. It is infinite in thermodynamical limit but finite for
any system with finite number of degrees of freedom.  
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Suppose now we conduct a series of n
measurements during the time interval t:

The density matrix after n-th measurement will be of the 
form:

 

,   

0,1,2,...,
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How this concept fits to atomic nuclei?

Energy difference:

Hence the SSB state flips between the two orientations with a frequency

In order to pin down a particular SSB mean-field configuration we would need
to probe the nucleus with much higher frequency.
(Compare to the fastest e-m transitions in nuclei which are of the order of
femtoseconds.)

The resolution of the probe (gamma or electrons) require energies at least
of the order of few hundred MeV.

Let us consider as an example the parity breaking by the nuclear mean-field:
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Summary

The concept of the spontaneous symmetry breaking (SSB) in atomic nuclei
has a vague meaning and strictly speaking SSB does not occur due to the tunneling 
between various SSB configurations.

Due to the finiteness of the nuclear system the nuclear SSB configurations (eg. mean-
field solutions) form metastable states and their lifetimes are too short to be visible by 
an external probe (eg. photons or electrons).

Still the concept of SSB is sometimes useful as it helps to explain in
an approximate way the  structural changes of nuclear states (similarly
to the concept of phase transition).


