From Łukasz Graczykowski
Zadanie
Dana jest gęstość prawdopodobieństwa:
Należy:
- wyznaczyć stałą c w taki sposób aby rozkład gęstości był unormowany
- wylosować z rozkładu gęstości parę liczb (x,y) i następnie wypełnić nimi histogram gęstości prawdopodobieństwa f(x,y) (0.5pkt)
- unormować histogram gęstości prawdopodobieństwa (0.5pkt)
- wyznaczyć i narysować histogram dystrybuanty F(x,y) (1pkt)
- wyznaczyć i narysować histogram gęstości brzegowej g(x) i h(y) (1pkt)
- wyznaczyć:
- wartości oczekiwane: E(X), E(Y) (0.5pkt)
- odchylenia standardowe sigma(X), sigma(Y) (0.5pkt)
- kowariancję cov(X,Y) (0.5pkt)
- współczynnik korelacji rho(X,Y) (0.5pkt)
Uwagi
- Do pracy z histogramami należy wykorzystać obiekty
TH1D
i TH2D
. Krótki przegląd możliwości tych obiektów można znaleźć w dokumencie: Histograms
Przykładowy wynik
Wykresy:
Wykres gęstości obrócony:
Output:
Wspolczynnik normujacy c=0.25
E(X)=1.14297
E(Y)=1.57093
sigma(X)=0.754221
sigma(Y)=0.685256
cov(X,Y)=-0.000631452
rho(X,Y)=-0.00122177