From Łukasz Graczykowski
Zadanie
Część pierwsza: liniowy kongruentny generator liczb losowych
Należy napisać generator liczb pseudolosowych oraz zapisać wygenerowane liczby do pliku.
Stworzony generator powinien opierać się na wzorze:
x[j+1] = (a*x[j] + c ) mod n.
Generator taki nazywamy generatorem LCG - czyli generatorem liniowym kongruentnym. Zadanie pewnej wartości poczatkowej x[0]
definiuje nam zatem cały ciąg, który ponadto jest ciągiem okresowym. Okres zależy od doboru parametrów i przy spelnieniu kilku warunków osiąga maksymalnie wartość m
. Warunki te to:
-
c
i m
nie maja wspolnych dzielników,
-
b = g-1
jest wielokrotnoscia kazdej liczby pierwszej p
, ktora jest dzielnikiem liczby n
,
-
b
jest wielokrotnością 4 jesli n
tez jest wielokrotnością 4.
Dla uproszczenia należy przyjąć c = 0
, otrzymując w ten sposób multiplikatywny liniowy generator kongruentny (MLCG).
- Wartości
g
oraz n
powinny być łatwe do modyfikacji w programie.
Efektem działania makra powinien być plik nazwa.dat zawierający ciąg wygenerowanych liczb dla zadanych parametrów. Makro należy uruchomić trzy razy, otrzymując trzy pliki: losowe1.dat, losowe2.dat, losowe3.dat
, dla parametrów odpowiednio:
-
n=97
i g=23
,
-
n=32363
i g=157
,
-
n=147483647
i g=16807
.
Część druga: test widmowy
Należy przeprowadzić test widmowy aby przetestować jakość generatora. By to zrobić należy narysować na płaszczyźnie punkty o współrzędnych (x[n], x[n+1])
. Uzyskany obraz utworzy wzór przypominający widmo generatora - stąd nazwa testu.
Jeśli punkty będą rozłożone równomiernie generator można uznać za dobry. Jeśli zdecydowanie widać pewną okresowość - punkty powtarzają się wielokrotnie - generator nie działa poprawnie. Oczywiście na rozłożenie punktów wpływa jedynie dobór parametrów a
i m
.
- Do tworzenia wykresów widma poleca się użycie obiektów
TH2D
.
Wynikiem powinny być trzy wykresy widma.
Część trzecia: Generacja liczb losowych oparta na transformacji rozkładu jednorodnego
Dowolna funkcja zmiennej losowej jest zmienną losową. Powstaje więc pytanie jaka jest gęstość zmiennej losowej Y jeżeli znana jest gęstość f(x)
. Zakładamy że prawdopodobieństwo g(y)dy
jest równe f(x)dx
gdzie dx
odpowiada wartością dy
. Warunek jest spełniony dla odpowiednio małych dx
. Wynika stąd, że:
g(y) = dy/dx f(x)
Teraz jeżeli założymy, że gęstość prawdopodobieństwa f(x) = 1
dla 0<=x<=1
i f(x) = 0
dla x<= 0 i x>1
to powyższe równanie możemy zapisać w postaci:
g(y)dy = dx = dG(y),
gdzie G(y)
jest dystrybuantą zmiennej losowej Y
. Co po całkowaniu daje nam
x = G(y) => y = G^-1(x).
Jeśli zmienna losowa X
ma rozkład jednostajny na odcinku pomiędzy 0 i 1 oraz jeśli znana jest funkcja odwrotna G^-1(x)
to funkcja g(y)
opisuje gęstość prawdopodobieństwa rozkładu zmiennej losowej Y.
Używając tej metody należy wygenerować 10000 liczb z rozkładu:
Dla tau = 2
:
- Należy wygenerować 10000 liczb z rozkładu 0 do 1 używając generatora z części pierwszej.
- Analitycznie (na kartce) policzyć dystrybuantę tego rozkładu, a następnie funkcję odwrotną.
- Wygenerować rozkład f(x) - wrzucając wygenerowane wartości do histogramu - korzystając z:
- Liczb wygenerowanych z pliku.
- Standardowego generatora ROOT'a
gRandom->Rndm(1)
.
- Narysować na jednym wykresie histogram (odpowiednio unormowany) oraz teoretyczną funkcję
f(x)
(obiekt TF1
).
Uwagi
- Wczytywanie danych z pliku:
ifstream ifile;
ifile.open("dane.dat");
double val;
while(ifile>>val)
{
cout<<val<<endl;
}
ifile.close();
- Zapisywanie danych do pliku:
ofstream ofile;
ofile.open("dane.dat");
for(int i=0;i<N;i++)
ofile<<val<<endl;
}
ofile.close();
Wynik
Przykładowy rozkład dla parametrów: