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Chapter 1 - Introduction 

International Standard Organization (ISO) prepared „Guide to the Expression of Uncertainty in 

Measurement”, which is definitive document describing norms and procedures in the measurements 

uncertainty evaluation. Based on the international ISO standard, Polish norm „Wyrażanie niepewności 

pomiaru. Przewodnik” [1] was accepted in the 1999.  

 

This guidebook is addressed to Physics Laboratories students and its main goal is to provide in-

formation necessary to understand international regulations concerning measurements of physical 

quantities as well as evaluation of measurement uncertainties in the everyday laboratory experiments.  

Chapter 2 - Base definitions 

- Measurement – set of activities determining the measured value. 

- Measurement uncertainty - parameter associated with the result of measurement characteriz-

ing dispersion of the values attributed to the measured quantity (measurand). 

- Standard uncertainty u(x) – the uncertainty of measurement expressed as a standard devia-

tion. Uncertainty can be reported in three different ways: u, u(x) or u(acceleration), where quantity x 

can be expressed also in words (in the example x is acceleration). Please note, that u is a number, not 

a function. 

- Type A evaluation of uncertainty – the evaluation of uncertainty by the statistical analysis of 

series of observations. 

- Type B evaluation of uncertainty – the evaluation of uncertainty by means other than the sta-

tistical analysis of series of observations, thus using method other than in type A. 

- Combined standard uncertainty uc(x) – represents the estimated standard deviation of the re-

sult and is obtained by combining the individual standard uncertainties (both type A and type B), using 

the usual method combining standard deviations. 

- Expanded uncertainty U(x) or Uc(x) – the measure of uncertainty that defines interval about 

the measurement that may be expected to encompass a large fraction of the distribution of values that 
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could reasonably be attributed to the measurand. The expanded uncertainty is especially applicable for 

some commercial, industrial and regulatory applications.  

- Coverage factor k – numeric multiplier of the standard uncertainty used for expanded uncer-

tainty determination. Typically, k is in the range 2 to 3. For the most laboratory cases it is recommend-

ed to use k = 2, which defines an interval having a level of confidence of approximately 95%. 

Chapter 3 - Uncertainty in measurements 

The aim of the measurement is to determine the measured value. Thus, the measurement begins 

with specifying the quantity to be measured, the method used for measurement (e.g. comparative, dif-

ferential, etc.) and the measurement procedure (set of steps described in detail and applied while 

measuring with the selected measuring method). In general, the result of a measurement is only an 

approximation or estimate of the value of the specific quantity subject to measurement, that is, the 

measurand. Thus, the result of measurement is complete only when accompanied by a quantitative 

statement of its uncertainty.  

It must be underlined and always remembered, that report of measurement result consists 

of determined value of the measured quantity and measurement uncertainty. 

 

There are many possible sources of uncertainty in a measurement, including: 

1. incomplete definition of the measurand; 

2. imperfect realization of the definition of the measurand; 

3. non-representative sampling — the sample measured may not represent the defined measurand; 

4. inadequate knowledge of the effects of environmental conditions on the measurement or imperfect 

measurement of environmental conditions; 

5. personal bias in reading analogue instruments; 

6. finite instrument resolution or discrimination threshold; 

7. inexact values of measurement standards and reference materials; 

8. inexact values of constants and other parameters obtained from external sources and used in the 

data-reduction algorithm; 

9. approximations and assumptions incorporated in the measurement method and procedure; 

10. variations in repeated observations of the measurand under apparently identical conditions. 

 

These sources are not necessarily independent, and some of sources (sources from 1 to 9) may 

contribute to source 10. 

 

Two categories of uncertainty can be distinguished based on their method of evaluation, "Type 

A" and "Type B" [2].  

 

Type A evaluation of standard uncertainty may be based on every statistical data analysis 

methods. For example, the standard deviation of a series of independent observations can be calculat-

ed, or at least squares method can be applied to fit the data with a curve and determine its parameters 

and their standard uncertainties. 

 

Type B evaluation of standard uncertainty is usually based on scientific judgment taking into 

account all available information including: 

- previous measurement data;  

- experience with or general knowledge of the behavior and properties of relevant materials and in-

struments;  

- manufacturer's specifications; 

- data provided in calibration and other certificates;  

- uncertainties assigned to reference data taken from handbooks. 

The proper use of the pool of available information for a Type B evaluation of standard uncer-

tainty calls for insight based on experience and general knowledge, and is a skill that can be learned 

with practice.  
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Chapter 4 - Evaluation of uncertainties  

If the measured quantity can be directly compared with the external standard, or if the meas-

urement is made using a single instrument giving result straightaway, is called direct measurement. 

This type of measurement include: length measurement with a ruler, diameter measurement of the rod 

using a micrometer, time measurement with a timer, measurement of electric current with an 

ampermeter or a voltage measurement with a voltmeter. 

In many cases, it is necessary to measure one or more physical quantities to determine quantity 

dependent on them. This type of measurement is called indirect measurement. These include for ex-

ample: the measurement (determination) of resistance by measuring current and voltage, determination 

of the cylinder volume by measuring its diameter and height, the measurement of gravitational accel-

eration based on the length and the period of oscillation pendulum. 

Methods used for calculating the measurement uncertainty depend on whether the measure-

ments were made directly or indirectly. 

4.1 Direct measurements 

Consider input quantity X determined in a direct way, which value is estimated from n inde-

pendent measurements x1, x2,, ..., xn. If one of the measured values differ significantly from the other 

(gross error), it should be disregarded and must not be taken into account in further calculations. In 

the most cases gross errors are caused by the investigator (e.g. reading 121 V instead of 12.1 V) or by 

a momentary disruption of the measurement conditions. The decision to recognize gross error depends 

on the investigator and is usually taken at the stage of interpretation of the results. 

Type A evaluation of standard uncertainty 

The set of independent n measurements x1, x2,, ..., xn can considered as a n-element random 

sample of the infinite set of measurements. If the probability distribution for xi is described by Gaussi-

an function (see Appendix B), the following way of data analysis can be applied. The arithmetic mean 

value should be considered as a result of the measurement: 
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It should be noted, that the bigger number of measurements results in a better mean value. 

Standard deviation of the mean value of the measurement of quantity X is equal:  
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where xs  is called the standard deviation of the mean value.  

Type B evaluation of standard uncertainty 

Quite often in the laboratory work only one measurement is performed (or a single measure-

ment of each measured quantities) or measured values show no spreading. This can happen especially, 

when the measuring device has low accuracy. For example, when measuring the thickness of the plate 

with micrometer screw, set of different results will be obtained, but if the millimeter ruler will be used 

to measure the same plate we will get always the same result. The accuracy of used meter device de-

termines the calibration uncertainty Δx (also called the uncertainty level). This is the number speci-

fied by the manufacturer of the measuring device or estimated on the basis of the scale interval used in 

the device. The probability of any result within the range defined by measured value and calibration 

accuracy is the same. Such a probability distribution is called a uniform distribution, and the standard 

deviation in this case is defined by formula 3/x  (Appendix B). The Type B standard uncertainty 

is equal to this value: 
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The other source of Type B measurement uncertainty may be investigator uncertainty Δxe and 

its value is estimated on the basis of investigators experimental skills and type of performed measure-

ment. The standard uncertainty in this case is also calculated using the formula (3), where Δx should 

be replaced with Δxe. In the case, where two sources of Type B uncertainty are observed both standard 

deviations should be added: 
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Combination of uncertainties 

If there are two types of uncertainties in the same experiment (Type A - dispersion of results 

and Type B - the uncertainty of calibration and investigator), they should be added using following 

formula for the standard total uncertainty: 
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It should be noted, that if one of the calculated uncertainties is more than one order of magni-

tude smaller it could be neglected. Equation (4) should be applied only in the case, when all of calcu-

lated standard deviations are the same order of magnitude. 

 

Determination of calibration uncertainties and investigator uncertainties for basic 
instruments used in the laboratory 

- Mechanical devices (rulers, micrometers, calipers) - Δx is equal to half of the interval. Cali-

bration uncertainty for mercury barometers, thermometers, stoppers etc. is defined the same way. 

- Analogue devices - calibration uncertainty Δx can be determined using the class of the instru-

ment and chosen measuring range: 

  
100

rangeclass
x


 . (5) 

Only the investigator observing the pointer during the measurement process can estimate the investi-

gator uncertainty. 

- Digital devices (electronic) - measurement uncertainty is defined in the technical data of the 

device specified in the manual. It depends mostly on the measured value of x and in the smaller extent 

on the used range: 

  zcxcx 21  , (6) 

where c1 and c2 are device constants specified in user manual - for the most of digital voltmeters used 

in the laboratory c1 = 0.05% and c2 = 0.01%, however in many cases one can apply c2 = 0. 

Please note that in order to determine Type B standard uncertainty, calculated above Δx values 

should be divided by 3  and possibly use the law of propagation of uncertainty. 
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4.2 Indirect measurements 

Indirect measurement of the quantity Z (called output) is performed by measuring k values 

measured directly (called input), marked as x1, x2, ...., xk. Desired value z depends on xk: 

),....,,( 21 kxxxfz   or )( kxfz  . 

For every directly measured quantity, its mean value kxxx ,....,, 21  and standard uncertainties u(x1), 

u(x2), ..., u(xk) should be determined. Standard uncertainties can be calculated by both, Type A and 

Type B methods. Obviously, in the case of method B, there is no average value but only the measure-

ment result. The measured value of Z is calculated using the formula: 

),....,,( 21 kxxxfz  . 

The uncertainty of Z is called the combined uncertainty uc and is calculated using the following 

formula (the law of propagation of uncertainty): 
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When the derivative functions are calculated, xj values should be replaced with the mean values jx .  

In the case of two directly measured quantities (x and y) combined uncertainty is equal: 
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In the case of direct measurements one can consider measurements of correlated and uncorre-

lated quantities (correlated and uncorrelated measurements).  

In the uncorrelated measurements every quantity is measured directly but in a different, inde-

pendent experiment (e.g. measured and calculated at different time). As an example of uncorrelated 

measurements we could consider experiments for determination of the gravitational acceleration using 

a pendulum. There are two independent measurements of the length of the pendulum and the oscilla-

tion period and based on this the acceleration is calculated using following formula: 
2

24

T
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g
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In the correlated measurements measured quantities are somehow dependent on each other. In 

this case it is important to perform all measurements of input quantities under exactly the same exper-

imental conditions, without introducing any changes in the measurement system. However, virtually in 

all experiments in the Physics Laboratory only uncorrelated measurements are performed and there-

fore combined uncertainty should be calculated using formula (7) or (8). 

4.3 Extended uncertainty 

The standard uncertainty u(x) defines the interval from )(xux   to )(xux  , within which the 

value of X can be asserted to lie with the probability of 68% for the Type A uncertainty, and with the 

probability of 58% for Type B uncertainty (these values are the result of Gaussian and uniform proba-

bility distributions, respectively). The standard uncertainty is a measure of the accuracy of measure-

ments and allows for the comparison of different methods of measurement. 

To make possible comparison of measurement results obtained in different laboratories and un-

der different conditions, the concept of the extended uncertainty U was introduced. Extended uncer-

tainty is commonly used to allow comparison of measured results with the reference data, but also for 

commercial purposes and to establish standards of industrial health, safety, etc. Extended uncertainty 

U(x) is equal to standard uncertainty value u(x) multiplied by the coverage factor k, so that in the in-
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terval x ±U(x) the large fraction of the distribution of measured values could reasonably be attributed 

to X.  

  )()( xukxU  , (9) 

In the most cases in the laboratory practice the coverage factor k = 2 should be used, since for 

this value the probability of finding the true value of X in the interval x ±U(x) is equal to 95% to Type 

A uncertainty and 100% for Type B uncertainty (probability equal to 100% for Type B uncertainty is 

achieved already for k = 1.73!). 

For the laboratory reference devices usually extended uncertainty with the coverage factor to 

k = 3 is presented as a measure of uncertainty. In this case the standard uncertainty, corresponding to a 

probability of 68%, is equal to 1/3 of the specified value of uncertainty. 

4.4 Reporting uncertainty 

It should be noted, that the report of measurement result must consists of measured value and 

measurement uncertainty and both of quantities should be expressed using SI units (see Appendix A). 

To report results of measurements properly one should start from the correct recording of uncertainty. 

Uncertainty is presented with accuracy (rounded) to two significant digits. The measurement result 

(the most probable value) is presented with an accuracy specified by the uncertainty, which means that 

the last digit of the measurement result and the measurements uncertainty must be at the same decimal 

place. Rounding of uncertainties and measurement follows the mathematical rules of rounding: digits 

0-4 are rounded down and the 5-9 digits are rounded up.  

 

Standard uncertainty can be reported in a number of ways: 

(1) t = 21.364 s, u(t) = 0.023 s 

(2) t = 21.364(23) s, – this is the most common and recommended way to report results for scientific 

publications and reference data 

(3) t = 21.364(0.023) s 

In notation (2) in the brackets two significant digits of standard uncertainty are presented 

whereas in the notation (3) standard uncertainty is presented in full form but with the same accuracy of 

2 significant digits. 

 

Extended uncertainty is only noted with the symbol ±. 

For the above mentioned example U(t) = k·u(t), t = 21.364 s, U(t) = 0.046 s (k = 2), n = 11 

t = (21.364±0.046) s. 

Chapter 5 - Measurements of functional type relations 

In the typical laboratory cases of indirect measurements are multiple, almost simultaneous 

measurements of two quantities x and y dependent on each other. For different values of xi different 

values of yi will be obtained and n pairs of numbers (xi, yi) will be the result of the measurement. 

If there is a known function relating measured quantities x and y (e.g. y = ax2) it is possible to 

determine function parameters (in this example, the parameter a by fitting collected data with the 

known functional relationship. The fitting procedure provides also standard uncertainty of determined 

parameters (Type A uncertainty). However this uncertainty doesn’t depend on the uncertainty of the 

measured values xi, yi and to take it into account complex uncertainty uc(z) has to be calculated for one 

of the measured pairs xi, yi (Type B uncertainty). Two types of uncertainties should be combined using 

uncertainty propagation rule. 

It is also possible to verify theoretical dependence between two measured quantities by fitting 

collected data with the known function. For example one can check the applicability of Ohm's law by 

measurement of current-voltage characteristic for unknown resistance. For this purposes different 

methods of fitting can be applied with the most known and widely used least squares method, which 

will be described later in this guidebook. 



Evaluation of uncertainty in measurements 

Faculty of Physics, Warsaw University of Technology – Physics Laboratory 7 

5.1 Linear type functions 

To verify theoretical model, dependence between measured quantities collected data points have 

to be fitted to the known function. In some cases this relation can be quite complicated including also 

implicit type function. Usually, the physical model also provides a range of values, for which model 

equation is valid. The task of the investigator is to perform as many measurements as possible in the 

range of applicability of the model to obtain the best fit. Modern computer software allows fitting any 

functional relationship to the set of measurements. However, the most of relationships in physics can 

be reduced to a linear form (linearized). Such a linearization is based on the transformation of function 

y = f(x) to another function Y = F(X), which will take the form of a first degree polynomial Y = BX + 

A.  

 

Some examples of transformation to linear dependence: 
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Mentioned above transformations are unique for function y = f(x). Two sets of experimental 

data (x1, x2, x3, ... xn) and (y1, y2, y3, ... yn), should be transformed to (X1, X2, X3, ... Xn) and (Y1, Y2, Y3, ... 

Yn) and plotted Y=F(X). In the next step fitting procedure using linear type function has to be applied. 

5.2 Least squares method 

The most commonly used method of linear regression analysis is the least squares method de-

scribed in details in Appendix C. The goal of this method is to determine parameters of modelling 

function to lie as close as possible to all experimental points. For this purpose sum of squared residuals 

is calculated, where residual is the difference between an observed value yi and the value provided by 

the model (Bxi + A). Parameters A and B are modified iteratively to minimize sum of squared residu-

als. 
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Students can prepare their own procedures to apply least squares method, following the infor-

mation in the Appendix C, but it is much more convenient to use some software with linear fit or lin-

ear regression options. As a result slope of the line (parameter B) and its intercept (parameter A) as 

well as their standard uncertainties u(B) and u(A) can be obtained. It should be noted, that there are 

different types of least squares methods. In the simplest case uncertainties of measured values xi and yi 

are unknown, but assumed to be equal. In this case standard uncertainties u(B) and u(A) doesn’t de-

pend on the uncertainties of measured values. The least squares method is one of the statistical meth-

ods and therefore it gives a Type A uncertainty. 

Appendix D shows an example of using least squares method with MicroCal Origin 8 software.  

5.3 Verification of linear dependence hypothesis 

Linear regression models, including least squares method, can be used to model experimental 

data. However, not always linear function offers proper fit to measured values. Most of the fitting 

software packages calculates also value of correlation factor, which is a number from the range [-1, 1] 

describing correlation between variables. Unfortunately in the most laboratory cases this parameter is 

close to 1 or -1 and doesn’t provide enough information on the deviation from linearity. Therefore 

other test should be performed to verify linear dependence for measured values.  

One of the possibilities is the graphical analysis. At first data points should be plotted, including 

uncertainty line segments of measured quantities. If the theoretical model line crosses uncertainty line 

segments for less than 2/3 of experimental data points, hypothesis of linear dependence should be re-

jected, even if the correlation factor is high. 
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The most commonly method used for hypothesis verification is χ2 test. The variable χ2 is de-

fined: 

  
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where y(xi) value of the tested hypothesis function at point xi, wi is a statistical weight value for point 

number i, which is calculated according to following formula: 
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Let us consider verification of linear dependence using χ2 test. In this case value of 2))(( ii xyy   is 

equal to squared difference between measured value yi and value of tested function at point x = xi, 
2))(( AxBy ii  . For every measurement point this value divided by the squared standard uncertainty 

shouldn’t be bigger than 1. In fact value bigger than 1 means, that fitted line doesn’t cross uncertainty 

line segment for this point. If the fitted line crosses all uncertainty line segments, test function χ2
 

should not be bigger than number of measured points n.  

Calculated value of χ2 function provides information on correlation between experimental data 

and fitted line. The second very important parameter of χ2 test is statistical significance value α. Sig-

nificance level describes level of confidence about linear dependence of measured data. The value of 

significance varies from 0 to 1 and is an input parameter set by investigator. For the high value of α 

also many good points (lying close to model line) will be rejected and for the very small values also 

points not fitting to model line will be considered. In the Laboratory experiments typical value of α = 

0.05 should be applied. It is also strongly suggested to analyse series of data not smaller than n = 6 

points. 

In the typical case χ2 value determined for experimental data points is compared with critical 

value χ2
critical for given significance value and given number of degree of freedom. Degree of freedom 

is equal to n number of data points reduced by number of parameters used in fitting procedure (for 

least squares procedure there are two parameters B and A). Critical values χ2
critical for different signifi-

cance value and degree of freedom values are presented in Appendix E.  

1. χ2 ≤  χ2
critical - hypothesis on linear dependence between measured values can be accepted 

2. χ2 > χ2
critical - hypothesis on linear dependence between measured values should be rejected 

If the value of χ2 function for experimental data is significantly higher than critical value, one 

should consider if the measurement uncertainty isn’t too big or measurements shouldn’t be repeated 

with higher accuracy measurement devices.  

If the linear dependence hypothesis is rejected, the other model should be tested. 

 

An example of χ2 test is presented in the Example 3 in the next Chapter. 

 

SUMMARY: least squares method applied for correlated quantities allows determining value 

of parameter correlating these quantities. However, at first fitted line should be plotted and investiga-

tor should check if it crosses uncertainty line segments. The second stronger condition is a χ2 test, 

which allows accepting or rejecting hypothesis regarding set significance level.  
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Examples 

Reporting measurement results 

 

Results of experiment and calculations   Reporting results 

 

a = 321.735 m/s; u(a) = 0.24678 m/s   a = 321.74 m/s; u(a) = 0.25 m/s 

  a = 321.74(25) m/s  

        a = 321.74(0.25) m/s 

 

b = 321785 m; u(b) = 1330 m    b = 321800 m; u(b) = 1300 m  

  b = 321800(1300) m 

        b = 321.8(1.3)·103 m 

        b = 321.8(1.3) km 

 

C = 0.0002210045 F; uc(C) = 0.00000056 F  C=0.00022100 F; uc(C)=0.00000056F 

  C = 221.00(56)·10-6 F  

        C = 221.00(0.56)·10-6 F 

        C = 221.00(56) μF 

 

T = 373.4213 K; u(T) = 2.3456 K    T = 373.4 K; u(T) = 2.3 K 

  T = 373.4(23) K 

        U(T) = 4.7 K (k=2) 

        T = (373.4 ± 4.7) K 

 

R = 7885.666 ; uc(R) = 66.6667    R = 7886 ; uc(R) = 67  

  R = 7886(67)  

        R = 7.886(0.067) k 

        Uc(R) = 130  (k=2) 

        R = (7890 ± 130)  

        R = (7.89 ± 0.13) k 

 

x = 1.12345 A; u(x) = 0.00011111 A   x = 1.12345 A; u(x) = 0.00011 A 

  x = 1.12345(11) A  

        x = 1.12345(0.00011) A 

 

y = 1.12 A; u(y) = 0.00011111 A    y = 1.12000 A; u(y) = 0.00011 A 

  y = 1.12000(11) A  

        y = 1.12000(0.00011) A 

 

NOTES: 

(1) Notation underlined is RECOMMENDED and should be used 

(2) Notation bolded refers only to extended uncertainty 

(3) It is allowed also to report results by text e.g. „The speed of sound in air is equal to 321.74 

m/s with standard uncertainty 0.25 m/s” 
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Example 1 

The dimension of squared cross-section rod was measured with calliper with accuracy of 0.1 

mm. Obtained results are: 12.5; 12.3; 12.6; 12.5; 12.3; 12.5; 12.7; 12.3; 12.7; 12.4; 12.3. Determine 

size of the rod. Report result properly. 

 

Measured quantity (the length of rod side - d) was measured directly by a series of measure-

ments. The result of experiment is a mean value according to formula (1): 
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Since the calliper’s interval is equal to 0.1 mm calibration uncertainty Δd is twice smaller – 

0.05 mm. Type B uncertainty can be calculated: 
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Since distribution of results is observed Type A standard uncertainty should be calculated using 

formula (2): 
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Both uncertainties Type A and Type B are the same order of magnitude, therefore uncertainty 

propagation rule should be used to determine overall standard uncertainty: 

055361.002887.0047238.0
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Standard uncertainty can be presented in different ways: 

 u = 0.055 mm 

 u(d) = 0.055 mm 

 u(side of the rod) = 0.055 mm 

 

Proper reporting of the result: 

 d = 12.464 mm. u(d) = 0.055 mm 

 d = 12.464(55) mm 

 d = 12.464(0.055) mm 

 

If the extended uncertainty is required (e.g. to be compared with literature reference data), then 

result should be reported: 

U(d) = k·u(d). d = 12.46 mm. U(d) = 0.11 mm (k = 2). n = 11 

d = (12.46±0.11) mm. 

 



Evaluation of uncertainty in measurements 

Faculty of Physics, Warsaw University of Technology – Physics Laboratory 11 

Example 2 [4] 

To determine gravitational acceleration, time of flight of a body dropped from height h was 

measured. The height h was measured 3 times with a line and every time the same value of 1270 mm 

was obtained. Time of flight was measured 5 times using a stopper with an accuracy 0.001 s and re-

corded values are: t1 = 0.509, t2 = 0.512, t3 = 0.510, t4 = 0.504, t5 = 0.501 s. The uncertainty related 

with the investigator and start and stop moments was estimated to be 0.01 s. Calculate gravitational 

acceleration and its uncertainty. 

Gravitational acceleration g can be calculated using formula 
2

2

t

h
g  . At first the average 

height h  and average time t is calculated using formula (1): 

mmmh 27.11270  , st 5072.0 . 

Now, based on h  and t  values the g value can be calculated: 

87359.9
5072.0

27.12
2



g m/s2. 

To determine uncertainty of indirectly measured g standard uncertainties of time and height 

should be calculated at first. 

 

Standard uncertainty u(t): 

Type A uncertainty: 

Formula (2) will be used: 

3
5

1

2

1

22 10035.2)5072.0(
45

1
)(

)1(

1
)( 









 
i

i

n

i

it ttt
nn

stu  s = 2.035 ms. 

Type B uncertainty: 

The uncertainty related with the investigator and his decision when to start and stop measuring 

time of flight was estimated to be Δte = 0,01 s = 10 ms (accuracy of the stopper can be neglected since 

is one order of magnitude smaller). Therefore Type B standard uncertainty is equal:  

7735.5
3

10

3
)( 


 ettu  ms. 

It should be noted, that both types of uncertainties are the same order of magnitude and there-

fore uncertainty propagation rule should be used to determine overall standard uncertainty: 

122.67735.5035.2)( 22 tu ms. 

The result of time measurement: t = 0.5072(61) s, n=5. 

 

Standard uncertainty u(h): 

In this case there is no distribution of results and standard uncertainty of height measurement 

should be determined as the Type B uncertainty. The smallest interval in the line is equal to 1 mm but 

taking into account other factors (non-vertical alignment of line, investigators error)  uncertainty of 

this measurement should be estimated as Δh = 2 mm. 

Therefore standard uncertainty Type B is equal:  

15.1
3

2

3
)( 




h
hu mm. 

Measurement of height can be reported: h = 1270.0(12) mm or h = 1.2700(12) m, n = 1. 

 

Combined uncertainty of gravitational acceleration uc(g): 

Since gravitational acceleration is measured based on two direct and uncorrelated measurements 

uncertainty propagation rule should be used (7): 












































 )(

4
)(

2
)()()( 2

2

3

2

2

2

2

2

2

2

tu
t

h
hu

t
tu

t

g
hu

h

g
guc  
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237.00564.0107.8006122.0
5072.0

27.14
0012.0

5072.0

2 52

2

3

2

2

2








 









 

m/s2. 

If we compare two components of combined uncertainty under square root, one can clearly find 

that the first one related with the height uncertainty is negligibly small compared to time uncertainty 

component.  

 

Notation reporting gravitational acceleration measurement results: 

g = 9.87 m/s2, uc(g) = 0.24 m/s2 

g = 9.87(24) m/s
2
 

g = 9.87(0.24) m/s2 

 

Extended uncertainty Uc(g): 

According to formula (9):  

Uc(g) = 2·uc(g) = 2·0.237 m/s2 = 0.474 m/s2. 

The final result of gravitational acceleration: 

g = (9.87±0.47) m/s
2
. 

This value can be compared with reference data according to which gravitational acceleration in 

Warsaw is equal to 9,80665 m/s2. This value lay within range defined by extended uncertainty, and 

therefore it can be considered as a correct measurement.  
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Example 3 

To verify linear type dependence between electric voltage applied to the resistor and measured 

current through this resistor two series of I and U measurements were performed for the same resistor 

of a nominal resistance equal to 10  and a class 5% (extended uncertainty is equal to 0.5 ). In two 

series two different ammeters were used. In the first experiment analogue ammeter of class 2.5 meas-

urement range 1.5 A, and with 50 intervals was used. In the second experiment digital ammeter was 

used and in this case formula (6) can be used to determine device uncertainty with c1 = 0.2% and c2 = 

0.1% for the measurement range 10 A. The voltage was measured with analogue voltmeter of a range 

15 V and class 2, in both cases. Measured values are presented in table. Is it possible to confirm exis-

tence of linear dependence between I and U? Does the measured resistance correspond to nominal 

value? 

 

Measurement results: 

 
SERIES I SERIES II 

U (V) I (A) ui(yi) ui(xi) U (V) I (A) ui(yi) ui(xi) 

0.0 0.03 0.028 0.17 0.0 0.0030 0.0058 0.17 

1.0 0.09 0.028 0.17 1.0 0.0877 0.0059 0.17 

2.0 0.18 0.028 0.17 2.0 0.2080 0.0060 0.17 

3.0 0.30 0.028 0.17 3.0 0.3005 0.0061 0.17 

4.0 0.42 0.028 0.17 4.0 0.3960 0.0062 0.17 

5.0 0.45 0.028 0.17 5.0 0.4886 0.0063 0.17 

6.0 0.54 0.028 0.17 6.0 0.5823 0.0065 0.17 

7.0 0.66 0.028 0.17 7.0 0.6626 0.0065 0.17 

8.0 0.75 0.028 0.17 8.0 0.7536 0.0066 0.17 

9.0 0.81 0.028 0.17 9.0 0.8255 0.0067 0.17 

10.0 0.93 0.028 0.17 10.0 0.9172 0.0068 0.17 

11.0 1.02 0.028 0.17 11.0 1.0073 0.0069 0.17 

 

Validity of Ohm's law was assumed U = R∙I and I(U) plots were prepared for both data series. 

 

 
The linear fitting procedure using Microcal Origin software was applied for experimental data 

(see insert in the figures above) and obtained parameters of the fit are listed below: 

 

Series I     Series II 

B = 0.09063    B = 0.09154 

A = 0.01654    A = 0.01526 

χ2 = 5.39     χ2 = 62.3    

 

In both cases, fitting lines cross all of the uncertainty boxes and the correlation factor for both 

series is similar and close to 1 (see Appendix D). In addition, slope values (parameter B) for both se-

ries are very similar, thus linear type of dependence seems to be confirmed. However, there is a signif-

icant difference in the χ2 parameter values. For the studied case number of degrees of freedom is equal 

to 10 (12 measurement points minus 2 fitted parameters) and for the significance value 0.05 critical 
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value of χ2 is equal to 18.3. Therefore, based on the first experimental series linear dependence hy-

pothesis cannot be rejected – 5.39 < 18.3. However, based on the second experimental series, with a 

higher accuracy devices, linear dependence hypothesis have to be rejected. It is worth to note, that 

small vale of χ2 for the first data series is suggesting, that the uncertainty of measurements are too high 

to use it in verification of linearity hypothesis. Indeed, only second series of measurements was good 

enough to reject mentioned hypothesis.  

This somehow surprising result can be also confirmed in other calculations. If we consider, that 

for an applied voltage equal to 0 no current should be measured, then fitting linear function has to 

cross additionally (0,0) point and consequently intercept parameter A should be zero. In this case, 

number of degrees of freedom is actually 11 (12 measurement points minus 1 for one fitted parame-

ter), and for significance value of 0.05 critical value for χ2 is equal to 19.7. The new fitting parameters 

are listed below:  

 
Series I     Series II 

B = 0.09279    B = 0.09373 

χ2
 = 6.59     χ2

 = 91.7 

 

The χ2 value for the first data series almost didn’t change for the new fit, but for the second se-

ries there is almost 50% change of χ2 value confirming, that hypothesis on linear dependence between 

U and I should be rejected. Obtained results suggest, that the measured resistance is changing with the 

applied voltage. Indeed, additional experiment showed that the temperature of the resistor was increas-

ing due to the Joule-Lenz heat and therefore its resistance was ca. 10% higher at the end of experi-

ment. Experimental data points were fitted with a new model function including temperature changes 

I = U/R ­ k∙U2 (k is a parameter) (Fig.1) and a resistance was determined to be 9.72   with a standard 

uncertainty of 0.12 . Obtained resistance result can be reported: 

R = (9.72 ± 0.24) . 

This agree with the technical specification for this resistor: R = (10.0 ± 0.5) .  
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Fig. 1. Polynomial function fitting of data from Example 3.  
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APPENDIX A 
SI Units 

A.1 Base units 

METRE (m) - The distance travelled by light in vacuum in 1/299792458 s (1983)  

KILOGRAM (kg) - The mass of the international prototype kilogram placed in Sevres (1901). 

SECOND (s) - The duration of 9192631770 periods of the radiation corresponding to the transi-

tion between the two hyperfine levels of the ground state of the cesium 133 atom 133Cs (1964). 

KELVIN (K) - 1/273.16 of the thermodynamic temperature of the triple point of water (1967/68). 

MOL (mol) - The amount of substance of a system which contains as many elementary entities 

as there are atoms in 0,012 kilogram of carbon 12, 12C (1971). 

AMPER (A) - The constant current which, if maintained in two straight parallel conductors of in-

finite length, of negligible circular cross-section, and placed 1 m apart in vacuum, would produce be-

tween these conductors a force equal to 2×10−7 newtons per meter of length (1948). 

CANDELA (cd) - The luminous intensity, in a given direction, of a source that emits monochro-

matic radiation of frequency 540×1012 hertz and that has a radiant intensity in that direction of 1/683 

watt per steradian (1979). 

A.2 Derived units 

RADIAN (rd) - One radian is the angle subtended at the center of a circle by an arc that is equal 

in length to the radius of the circle. 

STERADIAN (sr) - The solid angle subtended at the center of a unit sphere by a unit area on its 

surface. 

A.3 Prefixes 

Prefix name Symbol Factor 

Exa E 1018 = 1 000 000 000 000 000 000 

Peta P 1015 = 1 000 000 000 000 000 

Tera T 1012 = 1 000 000 000 000 

Giga G 109  =  1 000 000 000 

Mega M 106  =  1 000 000  

Kilo k 103  =  1 000 

Hecto h 102  =  100 

Deca da 101  =  10 

- - 1 

Deci d 10-1 =  0.1 

Centi c 10-2 =  0.01 

Milli m 10-3 =  0.001 

Micro  10-6 =  0.000 001 

Nano n 10-9 =  0.000 000 001 

Pico p 10-12 = 0.000 000 000 001 

Femto  f 10-15 = 0.000 000 000 000 001 

Atto a 10-18 = 0.000 000 000 000 000 001 
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APPENDIX B 
B.1 Gaussian distribution (normal distribution) 

 
If we assume that during our measurements, obtaining a result bigger or smaller compared to 

the mean value has the same probability, and the results far away from the mean value are less proba-

ble then ones close to the mean value, the distribution of results for big number of measurements 

may by estimated by the Gaussian curve: 








 


2

2

2

)(
exp

2

1
)(








x
x . 

Function (x) is called the Gaussian or normal distribution. It depends on two parameters μ and 

σ (mean and variance). The integral of this function fulfill the condition: 

1




dxx)( . 

This condition means, that finding a result of the measurement in the interval from x to x+dx is 

equal (x)dx, and the probability of finding any result in the interval from -∞ to ∞ must be equal 1. 

Parameters  and  can be easily interpreted analytically and statistically. For value x =  function 

(x) has its maximum. Parameter  defines two points  –  and  + , where the Gaussian graph has 

inflection points. Hence, the value  can be regarded as the measure of the distribution width. From 

the statistical point of view,  is the expectation value E(X), and the parameter  is the square root of 

the variance D2(X), called the standard deviation.  

The integrals of the function (x) presented below define probability of finding the specific 

number of the measurements (68.3%. 95.4% and 99.7%) in the intervals, which width is the standard 

deviation multiple: 

683.0)( 








 dxx  , 954.0)(

2

2










 dxx  , 997.0)(

3

3










 dxx . 

Gaussian distribution is continuous probability distribution, which can properly approxi-

mate the experimental dispersion of the measurements resulting from the causes described in Chapter 

3. This distribution can be adapted to finite number of measurements to evaluate Type A measurement 

uncertainty. In such case, the expected value of the distribution is mean value (1), and the standard 

deviation is the standard deviation of the mean value (2). 

 
[5

] 
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B.2 Uniform distribution 

 
 

The uniform distribution (also known as rectangular) is a symmetric probability distribution, in 

which probability density function is constant (not zero) in the interval from a to b, and outside this 

interval is equal to zero.  

The probability density function of the uniform distribution is: 

32

1
)(


 x    for 33   x , 

0)( x   for other x, 

where μ and σ (mean and variance) are as follows: 

2

ba 
 , and 

12

)( 2
2 ab
 . 

 

If we assume that for the Type B measurement uncertainty the calibration uncertainty deter-

mines the interval with 2Δx width about the μ value, then the formula (3) results directly from the 

variance definition (substitute a = - Δx i b = Δx). 

 

Note for the inquisitive persons: 

For the uniform distribution, the coverage factors which guarantee probability for finding spe-

cific number of measurements (95.4% and 99.7%) in the intervals being the multiple of the standard 

deviation are different than for the normal distribution. 95% gets for k = 1.65, 99% for k = 1.71, and 

for k = 1.73 the probability is equal 100%. 

 

 

[5

] 
x 

(x) 
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APPENDIX C 
The method of least squares  

The method of least squares is the most popular analytical method for fitting the linear function 

to the experimental points. Its name is connected with the criteria of the fitting quality – the parame-

ters of the linear function are chosen in such manner to minimize the sum of the squares residuals, a 

residual being the difference between an observed value yi and fitted value (Bxi + A) provided by the 

model function. 

.min)]([
1

22 


n

i

ii ABxyS  

To find out the parameters B and A the condition for the two variables function minimum is 

used: 

0
2






B

S
 and 0

2






A

S
. 

Calculating both partial derivatives creates the linear system of equations in the two unknown 

variables B and A. Further calculations are presented in the form enabling manual calculations. For 

every measured point, the values of auxiliary functions iX
~

, iY
~

 and id
~

must be calculated: 
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Next the value of the slope B and the intercept A (ordinate of the point in which the linear func-

tion crosses axis OY) can be obtained: 
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Formulas: 
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define the standard uncertainties of B and A. Nowadays, these calculations can be done using any 

software with linear regression or linear fit. On fig. 1 the results of the linear fit made by MicroCal 

Origin software are presented. 
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APPENDIX D 
Linear regression in the MicroCal Origin 8.0 software 

On the fig.2 the least square method in the MicroCal Origin 8 software (using function linear 

fit) is presented. Basic results of the calculation are displayed in the table, which appears automatically 

in the window Graph. Detailed information about the fitting and all statistical parameter can be found 

in the window Book, tab Data. In the table we can find the following information: 

 

- Equation – function fitted to the experimental data. In our example we have linear func-

tion y = a + b*x. 

- Weight – the method of calculating the statistical weight of the specific measured point. 

Instrumental means, that weight wi is calculating as a reciprocal of the squared uncertainty yi (val-

ue taken from the uncertainty column for quantity Y). 

- Residual Sum of Squares – value of the function χ2 (to display this value in the table with 

results, the option Residual Sum of Square in Quantities to Compute>Fit statistics in the window 

Fit Linear must be checked. 

- Adj. R-Square  – number that indicates how well data fit chosen statistical model. 1 indi-

cates that the regression line perfectly fits the data, while 0 indicates that the line does not fit the 

data at all. 

- Value and Standard Error – uncertainties for a and b. 

- Intercept (a) and Slope (b). 

 
Fig. 2 Linear fit in the MicroCal Origin software 
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APPENDIX E 

Critical values 2 for different significance levels α and the number 
of degrees of freedom 

 

 Significance level  
0.20 0.10 0.05 0.01 0.005 

N
u

m
b

er
 o

f 
d

eg
re

es
 o

f 
fr

ee
d

o
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1 

2 

3 

4 

5 

1.64 

3.22 

4.64 

6.0 

7.3 

2.7 

4.6 

6.3 

7.8 

9.2 

3.8 

6.0 

7.8 

9.5 

11.1 

6.6 

9.2 

11.3 

13.3 

15.1 

7.9 

11.6 

12.8 

14.9 

16.3 

6 

7 

8 

9 

10 

8.6 

9.8 

11.0 

12.2 

13.4 

10.6 

12.0 

13.4 

14.7 

16.0 

12.6 

14.1 

15.5 

16.9 

18.3 

16.8 

18.5 

20.1 

21.7 

23.2 

18.6 

20.3 

21.9 

23.6 

25.2 

11 

12 

13 

14 

15 

14.6 

15.8 

17.0 

18.2 

19.3 

17.3 

18.5 

19.8 

21.1 

22.3 

19.7 

21.0 

22.4 

23.7 

25.0 

24.7 

26.2 

27.7 

29.1 

30.6 

26.8 

28.3 

29.8 

31.0 

32.5 

16 

17 

18 

19 

20 

20.5 

21.6 

22.8 

23.9 

25.0 

23.5 

24.8 

26.0 

27.2 

28.4 

26.3 

27.6 

28.9 

30.1 

31.4 

32.0 

33.4 

34.8 

36.2 

37.6 

34.0 

35.5 

37.0 

38.5 

40.0 

 

Shaded gray column contains the critical values χ2 most frequently used in the students laboratory. 
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