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Milestones in laser development

1917 A. Einstein postulates stimulated emission 

1954 C. H. Townes & A. L. Schawlow invented maser*

1958 A. L. Schawlow & Ch. H. Townes - laser theory

1959 G. Gould – made the first (?) laser, coined the acronym 

LASER 

1960 T. Maiman – made the first (?) laser (in solid Ruby) 

1962 R. Hall invented the semiconductor injection laser

LASER : Light Amplification by Stimulated Emission of Radiation

*MASER - Microwave Amplification by Stimulated Emission of Radiation

http://www.pw.edu.pl/
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It was not at all difficult...
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Spontaneous emision

Unavoidable when N2 not empty
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Stimulated emission

Takes place when N2>N1 and  when there are photons of energy E2-E1

Photons generated under atom relaxation are identical (coherent) to 

those that stimulate the process

Scales with the spectral density of electromagnetic energy: )(

)();( 2121212
2  BWWN

dt

dN


21B - Einstein coefficient for stimulated emission 

 d)( - energy per unit volume in the frequency range   d,

Einstein postulate
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Stimulated (induced) absorption

Important for optical pumping

N1

N2

)();( 1212121
2  BWWN

dt

dN


Relation between Einstein coefficients:
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Transition cross-section and lineshape function

)()(  Sg

Saleh

S – transition strength



g() 
1

2



(  0)
2  ( /2)2

Lorentzian

g – transition profile
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Stimulated processes for monochromatic light

Stimulated emission:





h

I
N

dt

dN )(
)(2

2 

 - light frequency

I - signal intensity

hI / - photon flux

 - stimulated emission / absorption cross-section

Stimulated (induced) absorption:





h

I
N

dt

dN )(
)(1

2 

adding to field

subtracting from field

)()()()()( 1212  NNwithI
dz

dI
INN

dz

dI


 - gain coefficient if 0)( 12  NN or  loss coefficient if 0)( 12  NN

To find                 one needs to solve rate equations     )( 12 NN 
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Rate Equations 
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Population dynamics – 3 level system

11

1

2

3

R13

W12
A21W21

Fast, nonradiativeW32

PUMP

stimulated 
absorption 

Nonradiative
decay (heat)

Stimulated 
emission 

(amplification)Spontan. 
emission

A21  1/21;    2110ms

W32  1/32;   32 6ms

332113
3

221221112332
2

221221112113
1

NWNR
dt

dN

NANWNWNW
dt

dN

NANWNWNR
dt

dN





 03 N

0321 NNNN  Total Er density 
conserved

- probability of  transition  k  iWki

http://www.pw.edu.pl/


Quantum Electronics, Warsaw 2010

Saturated Gain Coefficient
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Inversion in two-, three-, and four-level systems

At best, you get 

equal populations

No lasing

Two-level 

system

Laser 

Transition

Four-level 

system

Lasing is easy!
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Laser principle

A laser is a medium that stores energy, surrounded by two mirrors.

A partially reflecting output mirror lets some light out.

Usually, additional losses in intensity occur, such as absorption, 

scattering, and reflections.  In general, the laser will lase if, in a round trip:

Gain > Loss                   This is called achieving Threshold

A laser will lase if the beam increases in intensity during a round 

trip: 
3 0I I

R = 100% R < 100%

I0 I1

I2I3
Laser medium

with gain, G

http://www.pw.edu.pl/
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Laser gain

Neglecting spontaneous emission:

 

2 1

2 1

dI dI
c BN I - BN I

dt dz

               B N - N I

 



[Stimulated emission minus absorption]

  2 1( ) (0)expI z I N N z 

absorption/gain cross-section, The solution is:

Laser medium

I(0)

z
L0

I(L)

 2 1g N N  

 1 2N N  

If N2 > N1:

If N2 < N1 :

Gain and absorption coefficients

  2 1expG N N L 

Gain
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“Cold” cavity
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Conditions for Laser Oscillations

•Gain Condition:  Laser Threshold

0Threshold Gain: ( ) r  

0

1
   where 

( ) ( )

r
t t

p

N N N
c


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   

=

=

•Phase Condition:  “Hot” cavity modes

Round-Trip Phase: 2 2 ( ) 2 1,2,3...k d d q q    


q
n

kd 






 


22

)(
1

 -Real part of susceptibility close to atomic line center

This phase correction pulls lasing frequencies towards medium resonance 

Frequency pulling
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Complex refractive index
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Far from resonances the 

imaginary part becomes 

negligible
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Frequency pulling

n

http://www.pw.edu.pl/
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Cold- and Hot-resonator modes

Threshold gain γ0

For homogeneously broadend gain modes compete for the same gain and 

only the one that experiences strongest gain survives – single frequency lasing

http://www.pw.edu.pl/
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Gain clamping

In a steady-state operation laser gain is clamped exactly to the value of 

the optical resonator losses

http://www.pw.edu.pl/
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Laser output and efficiency

Intensity

When the pumping power exceeds the threshold it does not increase the 

population inversion any longer – inversion is clamped at its threshold value.

The pump power is now converted to the laser output – lasing!

The steeper the slope (I vs Pumping rate) the higher is conversion efficiency.

http://www.pw.edu.pl/
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Basic principles of ultrafast (short pulse) 

lasers

Pump

Gain

Mode-locking

Mechanism

Dispersion

Compensation

Cavity modes

n = 2 L/n f = c/2 L 

http://www.pw.edu.pl/
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Concept of Mode Locking

Time Time

Out of phase Out of phaseIn phase

LOCKED phases for all laser modes Interference leads to pulse formation

Random relative phases
Intensity vs. Time

http://www.pw.edu.pl/
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narrow spectrum

continuous wave (CW)

broader spectrum

pulses (mode-locked)

broadest spectrum

shortest pulses

bandwidth

duration

 = const.

Del Mar Photonics

Bandwidth vs Pulsewidth

http://www.pw.edu.pl/
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Mode-locking methods

Passive:
element in the laser cavity to cause 

self-modulation of the light

Active:
external signal to induce a modulation

of the intra-cavity light

(Shorter pulses, but has startup problems)

http://www.pw.edu.pl/
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Can be described by N coupled equations: En  En+1, En-1 

Time

modulator transmission

cos(Mt)

In the frequency domain, a modulator introduces sidebands of every mode

nMnM

Frequency

n

cavity

modes
c/L

Active mode-mocking

When M = mode spacing, the sidebands of each mode coincide with the two adjacent 

modes. The sidebands and the modes compete for gain from the same atoms.

The sidebands win! so all three modes are driven in phase.  

Since this applies to all N cavity modes all of them become phase locked

http://www.pw.edu.pl/
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

(I) 
 0

1 I Isat

Passive mode-locking – use pulse to “gate” itself

High-intensity spikes amplified -

Low-intensity light absorbed

Saturable absorption introduced

into laser cavity:

Pulse peak amplified – pulse wings suppressed

http://www.pw.edu.pl/
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The effect of a saturable absorber

After many round trips, even a slightly saturable absorber can 

yield a very short pulse:

Short time (fs)

In
te

n
s

it
y

k = 1

k = 7

Notice that the weak pulses are suppressed, and 

the strong pulse shortens and is amplified

k = 2
k = 3

http://www.pw.edu.pl/


Quantum Electronics, Warsaw 2010

Kerr-lens modelocking (KLM)

Kerr-medium

Low-intensity

High-intensity

Some lasing materials (e.g. Ti:Sapphire) are Kerr-media

Kerr’s effect is much faster than saturable absorbers - very short pulses (~5 fs) 

possible

• Kerr’s effect – intensity-dependent index of 

refraction: n = n0 + n2I

• Beams of high-intensity modes are self-

focused by the photoinduced lens

Intensity

Aperture is used to discriminate

unfocused low intensity modes

This acts as a saturable absorber!

http://www.pw.edu.pl/
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Effect of Group Velocity Dispersion

Longer wavelengths (red) of the pulse propagate faster than the shorter ones (blue)

Frequency chirp Pulse streching

Uncompensated GVD makes fs laser operation impossible !

http://www.pw.edu.pl/
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GVD compensation

Recompress the pulse by different optical path for different frequencies

so that blue and red are in phase again:

Prism compensator

Difraction grating compensator

http://www.pw.edu.pl/
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Ti:Spphire oscillator layout

Mode-locking due to self-

focusing in Kerr medium

http://www.pw.edu.pl/


Quantum Electronics, Warsaw 2010

Q-switching principle

Preventing the laser from 

lasing until the inversion 

reaches its peak

Abruptly allowing the 

laser to lase - burst of 

power released in the 

form of pulse

Extremely high peak-power pulses (gigawatt)

Low pulse repetition rates

Pulse length limited by the round-trip time and how fast we can switch 

100%

0%

Time
C

a
v
it

y
 L

o
s
s

C
a
v
it

y
 G

a
in

Output intensity
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Q-switching – Giant pulse lasers

http://www.pw.edu.pl/
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Development of short pulse lasers

http://www.pw.edu.pl/
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Types of Lasers

Solid-state lasers have lasing material distributed in a solid matrix (such as 

ruby or Nd:YAG - neodymium:yttrium-aluminum garnet "YAG"). Flash 

lamps are the most common power source.

Semiconductor lasers, sometimes called diode lasers, are pn junctions. 

Current is the pump source.

Dye lasers use complex organic dyes, such as rhodamine 6G, in liquid solution 

or suspension as lasing media. They are tunable over a broad range of 

wavelengths. 

Gas lasers are pumped by current. Helium-Neon lases in the visible and IR.  

Argon lases in the visible and UV. CO2 lasers emit light in the far-infrared 

(10.6 mm).

Excimer lasers (from the terms excited and dimers) use reactive gases, such as 

chlorine and fluorine, mixed with inert gases such as argon, krypton, or 

xenon. When electrically stimulated, a pseudo molecule (dimer) is 

produced. Excimers lase in the UV. 

Fiber lasers: Optically pumped, Er-doped laser, Yb-doped laser, Raman laser.

http://www.pw.edu.pl/
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The Ruby Laser

Invented in 1960 by Ted Maiman at Hughes 

Research Labs, it was the first laser

Photo-pumped by a 

fast discharge flash-

lamp 1927- 2007

http://www.pw.edu.pl/
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Nd:YAG laser

http://www.pw.edu.pl/
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The Helium-

Neon Laser

Energetic electrons in a 

glow discharge collide 

with and excite He 

atoms, which then collide 

with and transfer the 

excitation to Ne atoms, 

an ideal 4-level system.

http://www.pw.edu.pl/
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The Argon Ion 

Laser

Argon lines:

Wavelength Relative Power Absolute Power

454.6 nm .03 .8 W 

457.9 nm .06 1.5 W 

465.8 nm .03 .8 W 

472.7 nm .05 1.3 W 

476.5 nm .12 3.0 W 

488.0 nm .32 8.0 W 

496.5 nm .12 3.0 W 

501.7 nm .07 1.8 W 

514.5 nm .40 10.0 W 

528.7 nm .07 1.8 W

Uses ionized gas as gain mediun

http://www.pw.edu.pl/
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Dye lasers

Dye lasers are an ideal four-level system, and a given dye will 

lase over a range of ~100 nm.

http://www.pw.edu.pl/
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A dye’s energy levels

The lower laser level can be almost any level in the S0

manifold.

S0: Ground 

electronic state 

manifold

S1: 1
st excited 

electronic state 

manifold

Laser Transitions

Dyes are so ideal that it’s often difficult to stop them from lasing 

in all directions!

Pump Transition

http://www.pw.edu.pl/
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Semiconductor (diode) lasers

http://curie.umd.umich.edu/Phys/classes/p150/archive/goodfor/SpinFlip.htm

Two outer semiconductor layers separated by a middle layer generate laser 

radiation when charge carriers of opposite polarity meet in the middle layer

Compact size (100μm x200 μm x50 μm)

Electrical pumping

Applications: Pump sources for solid state 

lasers and fiber lasers, CD player, laser 

printers, communications 

http://www.pw.edu.pl/
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Fiber lasers

Active gain medium is an optical fiber doped with rare-earth elements

or utilizing fiber nonlinearities

Scalable output power – kilowatts demonstrated (Southampton Univ)

Applications: communications, medical, material processing 

http://www.pw.edu.pl/
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Diode pumped double-clad fiber laser

http://www.pw.edu.pl/
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Properties of laser light

http://www.pw.edu.pl/

