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Optical beam modulation

Modulation formats:
Amplitude Modulation (AM), Phase Modulation (PM), Frequency Modulation (FM)

Optical carrier beam Amplitude Modulation Frequency Modulation

Optical field - very high frequency carrier (e.g. 200 THz for λ=1.5 μm)
large modulation frequency possible

large amounts of information can be coded

Applications: data encoding in optical communication, 

active mode locking of lasers, short pulse generation,

beam deflectors, etc

http://www.pw.edu.pl/
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Optical beam modulation for data encoding

Communication system: a physical variable (light intensity, field 

amplitude, frequency, phase, or even polarization) is modulated at one 

point and detected at another point

Modulator
CW light in

Modulated

light

Laser

Transmitter

Receiver

signal

V(t)Signal
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Amplitude modulation

Most popular for optical fiber communication systems, primarily due to the 

simplicity of envelope photo-detection

Non-Return-to-Zero

Return-to-Zero

For modulation 2.5 Gb/s and above external modulators preferred to avoid chirp

40 Gb/s commercially available (Lithium Niobate), Target: Terabit (1000 Gb/s) speed

http://www.pw.edu.pl/
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High speed modulator: Beyond 40 Gb/s
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10MbE (Coaxial) 

100MbE (Twisted Pair) 

1GbE
(Twisted Pair/Fiber) 

10GbE (Fiber) 

40Mb/s (First fiberoptical system) 

STM-16 

STM-64 

STM-256 

Potential 100Gb/s 

Ethernet standard 2006

Motivation:

Investigate transmitter technologies suitable for 100Gb/s

40 Gb/s and above:

External modulators 

necessary due to speed 

and chirp.

2.5 Gb/s and above:

External modulators 

preferred due to chirp.

Synchronous Transport Mode
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Electro-Optic (EO) effects

  ...332 )3(2)3()2(1     EEEEEEEEP oooooo

Combine a DC (or low frequency field) Eo with a wave Eω cos(ω t)

at optical frequency ω:

For Eo << Eω

     3)3(2)2()1(  t)cos(  t)cos(   EEEEEEP oooooo

DC Kerr effect  > AC Kerr effectPockels effect  >

Friedrich Pockels

(1865 - 1913)
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Linear EO (Pockels) effect

Linear electro-optic effect

discovered by Pockels in 1883

Relation between the 2nd order susceptibility

and the Pockels tensor 

External variation of the DC field provides phase modulation of light

 optical switching, wavelength tuning
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Impermeability tensor

Convenient to describe the induced changes in terms of impermeability tensor  η
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Useful scalar relations to estimate order of magnitudes:
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2

1

ij

ij
n



Impermeability tensor – contracted form

In lossless and optically inactive media                   is symmetric:     

jiij  

Hence 3x3 matrix  can be reduced (contracted) to a column of 6 independent elements:
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From diagonal elements

From off-diagonal elements
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Pockels tensor – symmetries, contracted notation

To be further reduced by spatial (group) symmetry  

In lossless and optically inactive media: Permutation symmetry

Contracted notation: lkijk rr 
 6           5           4        3       2      1      :

  12,21    31,13    23,32    33    22    11   :

l

ij

3,2,1k

In a centrosymmetric crystal              :0r

From the symmetry    should not change under lattice inversion: 

From physics (linear charge displacement under DC field):

r rrinv 

rrinv 
0r

jikijk rr 
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Impact of linear EO effect in contracted notation
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The change induced by the DC electric field E=(Ex, Ey, Ez):
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Linear EO effect – impact on Index ellipsoid

Unperturbed (E=0) Index ellipsoid

External electric field E distorts the Index ellipsoid.  Possible impact:
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Examples of electro-optic tensors
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Linear EO effect in KH2PO4 (KDP)

41

41

63

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

r

r

r

 
 
 
 
 
 
 
 
  

2 2 2

41 41 632 2 2

0 0

2 2 2 1x y z

e

x y z
r E yz r E xz r E xy

n n n
     

Obtain the equation for the index ellipsoid

Diagonalize the equation. Here, by rotating the reference system by 45o. 

For field polarized along z one obtains:
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Electrically tunable birefirngence !

Consider DC field along the optic axis z: ),0,0( zEE 
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Ellectrically induced birefringence

GaAsGaAs

ya EE 
za EE 

LiNbO3

0aE

Isotropic GaAs became uniaxial

Uniaxial  KDP and LiNbO3 became biaxial 

http://www.pw.edu.pl/
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Pockels cell – phase retardation

Consider a light beam passing through a ”cell” made of an electro-optic crystal, 

with its Index of ellipsoid modified by Ea field. 

Assume the input light linearly polarized at some angle to the crystal axis (e.g. 450

as in the figure). 

Decompose the input field into two fields Ex and Ey polarized along the crystal axes,

propagate them separately, and add at the cell output. 

The acquired phase retardation Г between Ex and Ey will be determined by:

LEnEnk ayaxyx )]()([0  

EO crystal

L

Polarization state can thus be tuned by Ea , and if desired converted to 

amplitude or frequency modulation

http://www.pw.edu.pl/
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Electro-optic retardation – longitudinal geometry

External electric field along the direction of light propagation

For KDP:

Retardation depends on V but not on length

Γ=

Ez
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Half voltage Vπ - voltage for which the pase shift Γ= π
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Electro-optic retardation – transverse geometry

1. Phase retardation depends 

on voltage V, length l and 

thickness d

2. Γ has a term not depending 

on the applied voltage: 

birefringence effect

For KDP:

External electric field normal to the direction of light propagation

At a given voltage V one can increase retardation by increasing

modulator length  l and/or  decreasing its thickness  d
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Malus’s Law

Phase modulation converted 

to intensity modulation
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Converting phase shift to transmitted intensity

After the polarizer P:

Yariv Ch. 1 & 9
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Amplitude modulation – longitudinal geometry
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For Гm<<1 - linear replica of the modulating voltage:
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Phase (frequency) modulation

If an optical wave is incident normally on the x’-y’ plane with its E vector along the 

x’ direction, the electro-optic effect will simply change the output phase, without 

change of the polarization:
3

0 63

2
x z

n r
E l

c
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3

0 63exp sin
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Phase modulation 

index

the output becomes (disregarding the constant phase factor):

 t)(iexpAein For an input beam and the external field  t)(iEE msinmz 
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Transit time limitation 
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Phase retardation for DC (or very slowly varying) field:

For E changing appreciably during the transit time τd=nl/c of the light through the crystal:

r - decrease in peaking retardation 

resulting from the finite transit time.

Modulation gets “averaged out”

For abs(r)=0.9 as a threshold, the maximum 

modulation frequency: 
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Traveling wave modulators
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Integrated transverse Pockels cell

V
d

L
rno 23

32




 

Constant Γ =0.5-0.7
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EO tunable Mach-Zehnder Interferometer (MZI)

y
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c axis  (Z)

Ezoptical Ezoptical

LiNbO3d
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c axis  (z)

Ezoptical Ezoptical

LiNbO3d
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Electrooptic Mach-Zehnder modulator

up to several cm
inP

V

n(E)

optical 

waveguides
• LiNbO3

• GaAs-AlGaAs

• InP-InGaAsP

• (polymers)

Mach-Zehnder Interferometer (MZI)

The input beam is split at the Y-junction into two beams that 

propagate in  each of identical arms.

With no voltage applied they constructively interfere and 

recombine in the output Y-junction – MZI has no effect. 

When the voltage is applied the refractive index of the arms 

becomes different.

The output is the sum of the two beams and the output intensity 

depends of their relative phase: 

  inp
ii

out IEeEeI 


cos1
2

1

2

1

2

1
2

21

http://www.pw.edu.pl/


Quantum Electronics, Warsaw 2010

Lithium niobate Mach-Zender modulator
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Electrooptical coupler modulator

Applied voltage alters the refractive indices and the  

induced phase mismatch decouples the guides
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THz all-optical modulation in a Si–polymer 

hybrid system

Michael Hochberg, Caltec 2006

The gate signal has its intensity modulation pattern 

transferred to the source via Cross Phase Modulation

due to NL Kerr effect in the polymer cladding

Nonlinear polymer cladding

Si substrate

No phase –matching needed between gate and source

Can be used to convert modulation to another wavelength
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EO modulators: pros and cons

Pros:

Very low optical loss

High power handling capability

Broad bandwidth

Zero or tunable chirp

Temperature insensitivity

Cons:

Large size

Bias-drifting issue

Polarization sensitive

Difficult to integrated with other components

High costs for large volume production
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40 Gb/s Si laser modulator

Interesting blog: http://blogs.intel.com/research/2007/07/40g_modulator.html

Micrometre-scale 40 Gb/s laser modulator in Si developed by Intel (2007)

Based on free-carrier plasma dispersion effect –

silicon’s refractive index is changed when

the density of free carriers (electrons/holes) is varied 

Future terabit per second optical chip – Intel vision
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