

Quantum Electronics Lecture 3

The book online:

http://ab-initio.mit.edu/book/

Light propagation in periodic media Photonic crystals

Lecturer:

Bozena Jaskorzynska bj@kth.se

HUMAN CAPITAL NATIONAL COHESION STRATEGY

EUROPEAN UNION EUROPEAN SOCIAL FUND

Lectures co-financed by the European Union in scope of the European Social Fund

Contents

- Bragg diffraction, Photonic bandgap
- Periodic layered media
- Waveguide gratings
- Bloch waves in photonic crystals (PhCs)
- Unusual dispersion properties of PhCs
- Defect waveguides
- Example devices
- Photonic crystals in nature

Periodic media

Periodically reapeted properties of the medium in analogy to a crystal lattice a_i – lattice constant

Periodic media - scattering regimes

Metamaterials

Bragg's law

Exactly half a wavelength fits in one period of the lattice

W.H. Bragg (1862-1942)

Formula for X-rays reflection from crystals (**Bragg's law**):

 Sir William Henry Bragg and his son William Lawrence Nobel Prize 1915

W.L. Bragg (1890-1971)

Bragg law for skew incidence

Periodic layered medium - Bragg reflector

Band gap width in layered media

Band gap edge - frequency at which the incoming and reflected waves in one of the layers are in phase

Dispersion in layered medium for ky=0

Deviation from the straight-line dispersion curve of a homogeneous medium is to ensure Bragg reflection for $kz = \pm N(\pi/a)$ - the curve becomes horizontal

Projected dispersion diagram – uniform dielectric

Dispersion diagram – two uniform dielectrics

Reflectance form dielectric interface

(Metallic mirror has low angular and polarization dependence, but very high loss for optical frequencies)

Dispersion diagram for 1D PhC (Bragg mirror)

Omnidirectional Reflection

[J. N. Winn et al, Opt. Lett. 23, 1573 (1998)]

Weak coupling – Coupled Mode Theory

Coupling coefficient:
$$\kappa = \frac{\omega \varepsilon_0}{4} \iint E_m^* \Delta n^2 E_l dx dy$$

Phase mismatch:

$$\Delta \beta = \beta_m - \beta_l \qquad \Delta \beta = \beta_m + \beta_l$$

Two phase mismatched modes can be coupled when z-variation of Δn^2 compensates the mismatch.

Grating assisted coupling

Periodic index modulation for compensation of pase mismatch: $K = \Delta \beta$

Grating period:
$$\Lambda \equiv \frac{2\pi}{K} = \frac{2\pi}{\Delta\beta} = \frac{2\pi}{(2\pi/\lambda)\Delta n} = \frac{\lambda}{\Delta n}$$

•Long period Bragg gratings (co-directional coupling) – Grating period longer than λ

$$\beta 1 \qquad \qquad \Lambda = \frac{2\pi}{(\beta_2 - \beta_1)} = \frac{\lambda}{(n_2 - n_1)}$$

Fiber UV induced Bragg-Grating

Holographic UV Lithography with 244 nm UV light

Mode coupling in fiber grating

Bandgap in all 3 dimensions

Extension to 3D, full band gap 1987 : E. Yablonovitch, S. John

The first 3D photonic crystal made by E. Yablonovitch 1991 (microwaves)

Yablonovite, 1991

E. Yablonovitch

S. John

"Woodpile" stack of Alumina rods

The first PhC for optical λ s (Proposed by K. M. Ho et al 1994, made by Lin et al 1998)

2D Photonic Crystals

Simpler fabrication Suitable for integrated optics (slab waveguide confinement in vertical direction)

Theoretical description

Starting point: Maxwell Equations

$$\nabla \cdot H = 0 \qquad \nabla \cdot \varepsilon E = 0$$
$$\nabla \times H - \frac{\varepsilon}{c} \frac{\partial E}{\partial t} = 0 \qquad \nabla \times E - \frac{1}{c} \frac{\partial H}{\partial t} = 0 \qquad \text{No sources}$$

• Look for time-harmonic states: $H(r,t)=H(r) e^{i\omega t}$, $E(r,t)=E(r) e^{i\omega t}$ • Eliminate the E fields \implies Hermitian eigenproblem:

$$\nabla \times \left(\frac{1}{\varepsilon(\vec{r})} \nabla \times H(\vec{r})\right) = \left(\frac{\omega}{c}\right)^2 H(\vec{r}) = \left(\frac{\omega}{c}\right)^2 H(\vec{r}) = \left(\frac{\omega}{c}\right)^2 H(\vec{r}) = \left(\frac{\omega}{c}\right)^2 H(\vec{r})$$

In general: The eigenproblem in infinite domain → Continuous ω spectrum But ε (r) is periodic ! → Discrete set of ω

Maxwell meets Bloch (& Floquet in 1D)

Bloch theorem:

Eigen-operator periodic — Solutions: e^{ikr} × (periodic function)

k is conserved, i.e. <u>no scattering</u> of Bloch waves on periodic index-modulation !!

Bloch waves are nonuniform plane waves with the envelope period = lattice period

Quantum Electronics, Warsaw 2010

F. Bloch 1905-1983

Bloch waves – "inteference optics"

Light **is scattered** from each of holes (rodes) in periodic media

But due to interference (Bragg diffraction) plane Bloch waves are formed

Huyghens interference

Constructive interference between two wavefronts in certain directions, + the destructive interference in other directions

^{1629 – 1695,} Dutch

Wave front

Two ways of viewing Bloch waves

A Bloch wave consists of multiple wavevectors:

Both pictures are correct and lead to the same results

Bloch eigenmodes

Propagating mode: Im k = 0

Evanescent mode: Im k > 0

Evanescent mode: Im k < 0

Unusual dispersion relations in PhC

Equal frequency surface (EFS) plot of the band structure for frequency **w=0.56-0.635**

For frequency 0.60-0.64 EFSs are circles, but their radius shrinks for increasing ω $V_q = \nabla_k \omega$ inward \longrightarrow All-angle Negative refraction!

Close to K propagation direction V_g ultra-sensitive to incidence angle and wavelength → Beam steering, Superprism effect

M. Notomi, Phys. Rev. B 62, 10697, 2000

Dispersion in uniform medium and PhC

Group velocity in photonic crystals can be inward directed due to negative slope of the dispersion !

"Negative Refraction" -> Self Focusing

M. Notomi, Phys. Rev. B 62, 10697, 2000

3D imaging

(x, y, z)→(x, y, -z)

Mirror-inverted 3D Real Image

----- 3D photographing?

 $(\mathbf{x},\,\mathbf{y},\,\mathbf{z}) {\rightarrow} (\mathbf{x}/\!Z,\,\mathbf{y}/\!Z,\,f^2/\!Z)$

2D image

3D pictures? Sub wavelength resolution imaging !! (similar to that in Negative Index Materials – NIM)

Simulation of Self-focusing due to Negative Refraction

Without photonic crystal

M. Qiu, L. Thylen, M. Swillo, and B. Jaskorzynska, IEEE J of Selected Topics in Quantum Electronics 9, (2003)

Demonstration of Negative Refraction at optical wavelengths - KTH

Wavelength = 1480 nm

Quantum Electronics, Warsaw 2010

M. Qiu et al, IEEE JSTQE, 9, 106, (2003) A. Berrier et al, Phys. Rev. Lett. 93, 073902, (2004)

Negative Refraction for polarization splitting -KTH

Operation range: 1530 – 1610 nm

TM polarization – positive refraction

TE polarization – negative refraction

Amorphous silicon pilars on silica

Silicon access waveguide 2.2 x 6 µm

Pilars diam 450 nm x 2.2 μm Matrix pitch 1.1 μm

L Liu, X. Ao, L. Wosinski, S. He

Beam steering

Utilizing strong band-edge anisotropy in PhC

Equal-frequency surfaces in (k_x, k_y) space :

Superprism effect

photonic crystal

glass

Superprism effect for de/multiplexing

Lin, Sandia (1996) - concept, Kosaka, NEC (1998) – demonstration at optical wavelengths

Potential applications:

De/Multiplexers for WDM optical communication systems High-resolution spectral analyses, e.g. for biophotonics

Demonstration of PhC superprism demultiplexer

Gatech, Momeni et al, OPTICS EXPRESS, 14, p. 2413 (2006)

Defect structures in photonic crystals

Defects in PhC lattice trap light at frequencies within photonic band gap

Confinement possible in a lower-index core – in contrast to index-guided waveguides (But in analogy to metal-mirror waveguides used for microwaves)

P. Yeh, A. Yariv, 1977

Defect states in 1D PhC - transmission spectrum

Unusual dispersion in PC waveguides

1D PC channel waveguide (KTH)

Narrow-band directional-coupler filter: BRW waveguide + TIR waveguide

0.3 nm for 1.7 mm length demonstrated KTH

OFC 2003 Optics Communications, vol 260/2 pp 514-521 (2006)

Defect structures in 2D photonic crystals

2D (and 3D) PCs open new routes for compact integrated optics

4 Way Hetro-Structure Beam Splitter

Parker, Delaware University

Photonic crystal integrated circuits?

IST PICCO, Univ of St Andrews

Contra-directional coupler drop-filter

Demonstration of 2D PhC directional-coupler drop-filter

M Qiu, M Mulot, M Swillo, S Anand, B Jaskorzynska, A Karlsson, M Kamp and A Forchel, Appl. Phys. Lett. 83, 5121 – 5123 (2003)

Photonic crystal fiber

C Bragg PBG guidance

Out-of-plane propagation

Can be endlessly (at all wavelengths) single-mode regardless of the core size !

Photonic crystals in nature

Opal

Adonis Blue Butterfly Lysandra bellargus

SEM of wing scale Zeuxidia amethystis

2D Photonic Crystal

Photonic crystals in butterfly wings

The wings of the male Cyanophrys remus are bright metallic blue on one side, thought to attract mates, and a dull green on the other to act as camouflage.

The metallic blue colour is "produced" by scales that are photonic single crystals whereas the dull green is the result of a random arrangement of photonic crystals

http://technology.newscientist.com/article/dn10006

Peacocks wear photonic crystals

http://cr4.globalspec.com/thread/1248/Photonic-Crystals-in-Nature

