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What is an optical resonator ?

Optical resonator is a trap for light !!

Confines and stores light at certain

resonance frequencies

Light circulates or is repeatedly reflected

High frequency selectivity

Applications: 

“Container”  for laser light

Optical filter or spectrum analyzer 

http://www.pw.edu.pl/
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The outgoing s for which d = m /2, add up in phase (resonant s)

Principle for Fabry Perot resonator

Condition for standing wave in a resonator

http://www.pw.edu.pl/
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Fabry-Perot resonator

Resonans condition

FSR

n

n

)2(

10

dnknkziinkz eEeE 

http://www.pw.edu.pl/


Quantum Electronics, Warsaw 2010

Planar-mirror (”closed”) waveguides

Let us use this simplest case to explain basic concepts for waveguiding

Imagine a monochromatic plane wave bouncing between two 

parallel, perfectly reflecting metal mirrors

The field is captured and in such a way can be guided

It CAN but IS it ??

Fundamentals of Photonics - Saleh and Teich

http://www.pw.edu.pl/
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Self-consistency creates modes

Guidance can only occur at angles at which self-consistency (transverse resonance)

condition is satisfied: as a wave reflects twice it duplicates itself

At those angles the two waves interfere to create a pattern that dose not change

with Z (forming a transverse field distribution, “profile” , of a guided mode)

c

Fundamentals of Photonics - Saleh and Teich

http://www.pw.edu.pl/
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Self-consistency condition
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Modal fields in a planar-mirror waveguide

Found from Helmholtz equation
+ boundary conditions at the walls
(Boundary-Value problem)

At the walls tangential components
of E and H must be continuous

(For metal mirrors E at the walls = 0)

Fundamentals of Photonics - Saleh and Teich

Orthogonality:

Normalization:

Orthogonality – each mode carries its own power and does not interact with the others

http://www.pw.edu.pl/
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Single-mode and “mixed” propagation

Intensity for single mode propagation 
does not vary with distance Z

Intensity for several modes propagating 

together varies with z since they interfere 

with the relative phase which varies along z
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Dielectric (“open”) waveguides

Light guiding by total internal reflection (TIR)

Discovered by Daniel Colladon in 1841 in water jet

http://www.pw.edu.pl/
http://en.wikipedia.org/wiki/File:Fibreoptic.jpg
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Total internal reflection

n2

n1

(n1 > n2)

At optical wavelengths one uses dielectric (open)
waveguides where the light is confined due to
the total internal reflection:

http://www.pw.edu.pl/
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Phase shift at the total internal reflection
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The phase shift for Φ drops from 0 to -π

http://www.pw.edu.pl/


Quantum Electronics, Warsaw 2010

Numerical aperture NA

Important for light incoupling to a waveguide !!

http://www.pw.edu.pl/
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Transverse resonance (consistency) condition

Light will not escape from a slab (film) when:

But this is not sufficient for light guidance !

In addition the transverse resonance (self-consistency) condition must be satisfied -
the incident and the doubly reflected wave must be in phase:

Phase shift: -2Φc

Phase shift: -2Φs

Film

Cover

Substrate
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where: Effective index
fc nNn 
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Side coupling to a waveguide

Lowest orderHigher orderskn3 kn2

β

kn1

Not possible to couple light directly from the side 

>

Not possible to match since:

Possible with a prism of refractive index ≥ n2

zz kk 21 

http://www.pw.edu.pl/
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Prism coupling

mmmprism Nkknkn 0020 )sin()sin(  Coupling to mode m if:

Prism coupler Intensity of reflected ligth vs 

angle of incididence

Experimental determination of  mode  propagation constants )sin(02 mm kn  

http://www.pw.edu.pl/
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Dispersion relation

Effective index

Phase shift for TE (i = s or c):

For guided modes

http://www.pw.edu.pl/
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Typical dispersion diagram
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Group and effective indices in waveguides

 Effective index is always smaller than core index
 Group index can be larger than core index nf !
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Group velocity for guided modes

Symmetric waveguide

n2

n1 θ

n2

http://www.pw.edu.pl/
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Graphical solution of the dispersion equation

(2π n f h cos ө ) ∕ λ = Φs(ө) + Φc(ө) 

http://www.pw.edu.pl/
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Normalized units for slab waveguides
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Normalized dispersion diagram

(for higher modes)

Number
b

From the normalized dispersion diagram

one can find modal propagation constants.

To find modal field distributions (profiles)

one has to solve Helmholtz equations

with appropriate boundary conditions.

(for fundamental mode)

http://www.pw.edu.pl/
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Modal profiles
To find modal field distributions (profiles) one has to solve Helmhotz equations - in general, 

coupled (vectorial problem)!

For a slab waveguide they decouple into two scalar problems for TE and TM polarizations

0 EzExHyTE: , other
components expressed by 
one scalar, e.g. Ey

0 HzHxEyTM: , other 
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Helmholtz equations for modes
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Modal field form

For guided modes:

Cover:

Film:

Substrate:

For solutions satisfying the bondary condition see e.g. Yariv Chapt. 3.1

Evanescent field

Evanescent field

http://www.pw.edu.pl/
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Types of modes



Guided modes

Substrate radiation modes

(also leaky modes)

Radiation modes
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Waveguide mode general properties
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Modes are ORTOGONAL

Each of them carries its own power

and does not interact with the others

Set of all modes (including

radiation and evanescent ones)

is COMPLETE

Any field can be expressed as 

their superposition

Any longitudinally uniform structure has its eigen modes

– no matter what is the cross-sectional shape

Coupling between modes is only possible when guided structure 

has a perturbation along mode propagation direction

http://www.pw.edu.pl/
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Effective index method (EIM)
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Rib/ridge waveguide
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2 31

2 3 1from symmetry same as

Replace each of the rib three sections with a slab of the corresponding thickness.

Find effective indices for the slabs (1D problem, tabularized).

Replace the vertical (y) index profile in each section with the respective effective index. 

N2 N3

Find effective index 

for the resulted 

”perpendicular” slab: 
N

Note: EIM should be applied to each waveguide mode separately!

Change of polarization using the ”perpendicular” reprezentation. 
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Effective index method

Channel waveguide

ncore

nclad

neff,core ncladnclad

Rib/ridge waveguide

ncore

nclad
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neff,core neff,cladneff,clad

y

x
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EIM mode solver  - ridge waveguide:

http://wwwhome.math.utwente.nl/~hammerm/eims.html

http://wwwhome.math.utwente.nl/~hammer/eimsinout.html

http://www.pw.edu.pl/
http://wwwhome.math.utwente.nl/~hammerm/eims.html
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Effective Index Method

Reduces 3D problem to 2D one       Greatly improves computation efficiency

http://www.pw.edu.pl/
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Geometries of channel waveguides

http://www.pw.edu.pl/
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Coupled Mode Theory (CMT)

CTM is exact!  

No para-axial approximation is needed to derive coupled wave equations

How we then approximate those equations depends on the physical problem 

http://www.pw.edu.pl/
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Lorentz Reciprocity Theorem

Hendrik Antoon Lorentz

(1853 – 1928)

Basis for Coupled 

Mode Theory

http://www.pw.edu.pl/
http://upload.wikimedia.org/wikipedia/commons/3/33/Hendrik_Antoon_Lorentz.jpg
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Polarization induced by perturbation of 

refractive index

Perturbation polarization can, for example, be induced by:

■ Waveguide defects

■ Introduced deformations, e.g. periodic ones

■ External electric DC field, e.g. by electro-optic effect: 

■ Strong electromagnetic field, e.g. by optical Kerr effect: 

rEn
2

2 Enn

Induced 

polarization:
EnP 2

0
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Coupled mode equations (exact)

One assumes E1 be a superposition of all modes and E2 be a mode 

“μ” of unperturbed waveguide

From the reciprocity theorem one can derive coupled equations for 

evolution of modal amplitudes due to refractive index perturbation

Substituting E1 and E2 to the integral form of reciprocity theorem

and making use of mode orthogonality  yields:

Forward 

propagating
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Modal amplitudes slowly varying due to coupling
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Approximation - phase matched mode coupling
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Coupling between two modes

Coupling coefficient: dxdyEnE lm
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Example: Mode coupling in periodic waveguide
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Regard this as distortion

of waveguide of thickness h0

0h

Chose the modulation period so that it at some frequency matches the forward and 

backward modes of the same order (mode order skipped)
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Periodic groves - Coupling coefficient

Evaluate the  coupling coefficient :  dxEzEz lm )(
4

)(ˆ *




)()(
4

2
cos

2
2)(

44
ˆ

2222
2

2

2
cos

0

2

0

2

zizizizi

h

h

zh

eeeeE

zhEdxhxEdxE

















 



















Coupling between forward and backward modes of the same order: EEE lm 

nE
n

nnEnEE hhhh 












20202202

2
2

444


http://www.pw.edu.pl/


Quantum Electronics, Warsaw 2010

Forward to backward wave coupling

Chose the modulation period so that it at some frequency matches 

the forward and backward mode of the same order:
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Solution for mode coupling
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Solution at Bragg resonance

2
A

2
A

P

0

fn

L
z

x

cnFor = 0

(Bragg condition):

 
 
 
 L

Lzi
AzA

L

Lz
AzA









cosh

)(sinh
)0()(

cosh

)(cosh
)0()(











L
A

A
R 2

2

max tanh
)0(

)0(






Reflectance:

http://www.pw.edu.pl/


Quantum Electronics, Warsaw 2010

Bandwidth for Bragg gratings

Note that length L is fixed here

The bandwidth for κL< 3 will 

shrink with decreasing L !

http://www.pw.edu.pl/


Quantum Electronics, Warsaw 2010

Grating reflectivity 

http://www.pw.edu.pl/
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Bandwidth – weak grating

Weak, long gratings are used as wavelength filters

(decreases with L)

http://www.pw.edu.pl/
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Photonic band gap due to periodicity
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Bandwidth – strong grating

(increases with к)

Strong gratings are used as broadband reflectors

http://www.pw.edu.pl/
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Modes coupling in directional coupler

Arm a sees arm b

as a perturbation

Arm b sees arm b

as a perturbation

Yariv Chapt. 13

http://www.pw.edu.pl/
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Coupled mode equations for directional coupler
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Directional coupler cont.

Coupling length
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Coupling and Interference

Switches and multiplexers based on planar waveguides or fibers typically utilize:

or

Interference effects

e.g. Fabry-Perot Interferometer 

Mach-Zehnder interferometer

Distributed mode coupling

e.g. Bragg grating

Directional coupler ?
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Directional coupler – Eigen (“super”) modes

Coupling length = ½ Beat length for the supermodes

Phase match frequency
Interference of two modes
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Directional coupler
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Y-junction
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Mach Zehnder Interferometer (MZI) demultiplexer

Consider both arms be identical waveguides but their length differs by  L
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NL(1/1)= /2   and   NL(1/2)] = 

All the power at 1 will exit from port 1 and all the power at  2 from port 2 if:

Hence: L = {2neff[(1/1) - (1/2)]}
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MZI interleaver
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Frequency silicer / DWDM interleavers - separates a series of optical 

channels so alternating wavelengths emerge out its two ports
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Arrayed Waveguide Grating de-multiplexer

Picture of AWG from S.V. Kartalopoulos

S1 , S2 - „star couplers“ or free space couplers

Interference

separates

wavelengths 

here

λ3

λ1

λ2

Input port

The coupling behavior of coupler S2 depends on both        and the

location of the input port (which determines phase delay in S1 )
λn
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