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Abstract

Using the minority game model we study a broad spectrum of problems of market mechanism.
We study the role of di�erent types of agents: producers, speculators as well as noise traders. The
central issue here is the information ow: producers feed in the information whereas speculators
make it away. How well each agent fares in the common game depends on the market conditions,
as well as their sophistication. Sometimes there is much to gain with little e�ort, sometimes great
e�ort virtually brings no more incremental gain. Market impact is also shown to play an important
role, a strategy should be judged when it is actually used in play for its quality. Though the
minority game is an extremely simpli�ed market model, it allows to ask, analyze and answer
many questions which arise in real markets. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Recently, it became possible to study markets of heterogenous agents, in particular
in the form of the so-called minority games (MG) [1,2]. Since long-time practition-
ers of the market, as well as some economists have criticized the main-stream eco-
nomics where a so-called representative agent plays the central role. Many prominent
economists like Herbert Simon [3], Richard Day and Brian Arthur [4] have been force-
ful proponents of the “bounded rationality” and “inductive thinking”. However, though
many people join in unison in their criticism of the main stream, their alternative
approaches and models do not command consensus yet.
The MG is inspired by Arthur’s “El Farol” model [4], which shows for the �rst

time how the equilibrium can be reached using inductive thinking. Whereas El Farol
model is about the equilibrium, our MG model is about uctuations. In a sense MG
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gives us a powerful tool to study detailed pattern of uctuations, the equilibrium point
is trivial by design. It is the uctuations that play the dominant role in economic
activities, like the market mechanism. MG allows us to study in a precise manner the
approach to equilibrium, how the agents try to outsmart each other, for their sel�sh
gain, compete for the available marginal information (any deviation from the mid-point
represents exploitable advantage). It is for this residual margin that all the agents �ght
for, resembling the real markets. The importance to market mechanism is primordial,
as any practitioner can attest. Neo-classical economics would tell us that the MG, as
in a competitive market, does not o�er consistent gain, based on the e�cient market
hypothesis (EMH). However, if some agents stop playing (i.e. choosing dynamically
among the two sides), they will give away information that the other more diligent
dynamic agents make use of. This means that equilibrium can be only dynamically
maintained, any relaxing would imply a relative disadvantage. It is not that the same
thing occurs in real markets?
Studying a model of market mechanism opens up many detailed questions, which

practitioners have to face constantly but the main-stream economists do not have any
clue to answer them. For instance, in a model like MG agents interact with each
other through a common market, what information each agent brings in? What gain
each agent takes out? How sophisticated should an agent be? What is realizable gain
objective? What is the role of noise traders? How about insider trading (an agent
processing privileged information about fellow agents)? What is the market impact of
an otherwise clever strategy? The list is obviously endless. The point we want to make
here is that with so little to start with, and with so many questions relevant to real
markets one can hope for a qualitative answer.
After two years since the MG’s birth, during which much work has revealed its ex-

tremely rich structure [5], an analytical approach leading to its exact solution has been
found [6,7]. Unfortunately, the main progress is still con�ned in the physics commu-
nity. We hope that, with this paper, this will change: The aim is to convince people,
including economists hopefully, that many concrete questions about market mecha-
nisms can be asked and answered, in precise and analytical way, using the approach of
Refs. [6,7]. In fact the MG can be used as a exible platform and di�erent handles can
be added and manipulated almost at will. To achieve our goal, the analytic approach
shall be supplemented by numerical simulations to con�rm its validity. More technical
parts and heavy calculations shall be dealt with in the appendices.

2. Main results

Here below we give a list of salient points of our paper:
(1) Diversi�cation of ideas. If an agent has di�erent alternative strategies, it is

better to have them diversi�ed, i.e., not too much correlated. We show the e�ects of
diversi�cation.
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(2) Markets have two types of agents: producers and speculators. The former do
not have alternative strategies; the latter are represented by the normal agents of the
standard MG. Producers provide information into the market, upon which speculators
feed. For the �rst time it is possible to demonstrate that producers and speculators need
each other, they live in a symbiosis. However, bene�ts to each group are not equal,
depending on the parameters.
(3) Agents are not obliged to play, if they do not see a possible gain. We generalize

MG to let agents have the option of not playing. In the presence of producers, markets
appear to be attractive and more speculators are drawn into the fore.
(4) Noise traders. One may wonder if some traders decide to be pure noise traders,

i.e., they use completely random strategy, what is the “harm” done to other market
participants (producers and speculators), as well as to themselves. In the information
rich phase, they appear to increase volatility and in the herding-e�ect phase, they
actually make the market perform better.
(5) Despite the fact that agents start equally equipped, there are better and worse

agents and the rank of the agents has an interesting non-Gaussian “bar-code” structure.
(6) Sometimes it pays to increase the capacity of an agent’s brain, say add one

more unit in M . This will give enormous advantage to the better-equipped agent in the
crowded phase (or symmetric phase), where information on the range M is exhausted,
whereas such a feature becomes a disadvantage in the information-rich phase.
(7) Does it pay to have more strategies as alternatives? In general yes. Here we

calculate the relative advantage by having more alternatives. We also show that, due
to self-market impact, the imagined gain di�ers from the real gain, a fact known too
well to market practitioners. Even each agent has many alternatives, they actually use
only a small number of them.
(8) Some agents may get illegal information about others. It is just like a stock

broker who knows his clients’ orders before execution. Hence, he has privileged in-
formation and should be barred from trading. An agent who spies on fellow agents
enjoys trading advantages. We measure how much is this e�ect, as the number of
fellow agents whom you spy increases, how much would be your gain.

3. Formalism and review

Our model of market consists of N agents which, for simplicity, can take only one of
two actions, such as “buy” and “sell” at each time step t. We represent this assuming
that each agent i=1; : : : ; N , at time t, can either do the action ai(t)=+1 or the opposite
action ai(t) =−1. Given the actions of all agents, the gain of agent i is given by

gi(t) =−ai(t)A(t) where A(t) =
N∑
j=1

aj(t) : (1)

This equation models the basic structure of market interaction where each agent’s
payo�s are determined by the action taken and by a global quantity A(t), which is
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usually a price and it is determined by all of them. For simplicity, we assume here a
linear dependence of gi(t) on A(t). Other choices, such as gi(t) = −ai(t) sign A(t) in
Refs. [1,8,9], can be taken without a�ecting qualitatively the results we shall discuss
below. This interaction clearly rewards the minority of agents (those who took the
action ai(t) = −sign A(t)) who gain an amount |A(t)| and punishes the majority by a
loss −|A(t)|, hence the name minority game [1]. There are always more losers than
winners and agents have no way of knowing what the majority will do before taking
their actions.
All agents have access to public information which is represented by an integer

variable � taking one of P values. At time t information “takes the value” �(t). We
shall also call �(t) history since originally this information has been introduced as
encoding the record of the past M = log2 P signs of A(t) with M bits. It has however
been shown [10] that if �(t) is randomly drawn in {1; : : : ; P} one recovers the same
results (see also the discussion in Refs. [6,7]). We shall henceforth consider this second,
simpler case. When having access to some information, agents can behave di�erently
for di�erent values of �(t), eventually because of their personal beliefs on the impact
that information �(t) shall have on the outcome of the market, A(t). Strictly speaking
A(t) only depends on what agents do, so �(t) has no direct impact on the market.
However, if agents behavior depends on �(t) also A(t) shall depend on it, and we
denote it by A�(t)(t).
How do agents choose actions under information �(t)? If agents expect that �(t)

contains some information on the market, they will consider forecasting strategies
which for each value of � suggest which action a� shall be done. There are 2P such
strategies, and we assume, for the time being, that each agent just picks S such rules
randomly (with replacement) from the set of all 2P strategies. The action of agent i if
she follows her sth strategy and the information is � is denoted by a�s; i. Therefore, if
si(t) is the choice made (in a way we shall specify below) by agent i at time t, her
action becomes ai(t)→ a�(t)si(t); i and correspondingly, her gain [Eq. (1)] becomes

gi(t) =−a�(t)si(t); iA
�(t)(t) where A�(t)(t) =

N∑
j=1

a�(t)sj(t); j : (2)

In this paper, we mainly focus on S = 2. This case contains all the richness of the
model and allows a more transparent presentation. All the results discussed below can
be extended to S ¿ 2 along the lines of Ref. [7]. For S = 2 we can adopt a notation
where each agent controls a variable si ∈ {↓; ↑}, with the identi�cation ↑ = + 1 and
↓ =− 1. This is useful to distinguish strategies si from actions ai. It is convenient to
introduce the variables

!�i =
a�↑; i + a

�
↓; i

2
; ��i =

a�↑; i − a�↓; i
2

: (3)

With these notations, the action taken by this agent in reaction to the history � is

a�i; si = !
�
i + �

�
i si ; (4)
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so !�i represents the part of i’s strategies which is �xed, whereas �
�
i is the variable

part. We also de�ne 
� =
∑

i !
�
i so that

A�(t) =
N∑
i=1

a�i; si(t) = 

� +

N∑
i=1

��i si(t) : (5)

Each agent updates the cumulated virtual payo�s of all her strategies according to

Us; i(t + 1) = Us; i(t)− A�(t)(t)a�(t)i; s (6)

The quantity Ui;s is a “reliability index” which quanti�es the agent i’s perception of the
success of her sth strategy. Ui;s(t) is the virtual cumulated payo� that agent i would
have received up to time t if she had always played strategy s (with others playing
the strategies sj(t′) which they actually played at times t′¡t). Virtual here means
that this is not the real cumulated payo� but rather that perceived by agent i. These
di�er, as explained below and in Ref. [7], because agents neglect their impact on the
market (i.e., the fact that if they had indeed always played s the aggregate quantity
A(t) would have been di�erent).
Inductive dynamics [4,1] consists in assuming that agents trust and use their most

reliable strategy, which are those with the largest virtual score:

si(t) = arg max
s∈{↑;↓}

Ui;s(t) : (7)

More generally, one can consider a probabilistic choice rule – the so called Logit
model [11] – such that P(si(t) = s) ˙ exp[�Us; i(t)], (see [12,6,7]). Then Eq. (7) is
recovered in the limit � → ∞. As in Ref. [13], we �nd it useful to introduce the
variables �i(t) = Ui;↑ − Ui;↓. Their dynamics reads

�i(t + 1) = �i(t)− A�t (t)��ti (8)

and Eq. (7) becomes

si(t) = sign�i(t) : (9)

3.1. Notations on averages

We de�ne the temporal average of a given time-dependent quantity R(t) as

〈R〉= lim
T→∞

1
T

T∑
t=1

R(t) : (10)

This quantity can be decomposed into conditional averages on histories, that is

〈R�〉= lim
T→∞

P
T

T∑
t=1

R(t)��(t);� : (11)

Note that the factor P and the relation 〈��(t);�〉= 1=P imply that 〈R�〉 is a conditional
average. More precisely, it is the temporal average of the quantity R(t) subject to the
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condition that the actual history �(t) was 1 �. Finally, averages over the histories � of
a quantity R� are de�ned as

�R ≡ 1
P

P∑
�=1

R� : (12)

3.2. Quantities of interest

With these notations, let us now discuss the main quantities which characterize the
stationary state of the system. The main free parameter, as �rst observed in Ref. [8],
is

�=
P
N

(13)

and we shall eventually consider the thermodynamic limit where N; P → ∞ with �
�xed. The �rst quantity of interest is

�2 ≡ 〈A〉2 = �

2
+ 2

N∑
i=1


�i〈si〉〈si〉+
∑
i; j

�i�j〈sisj〉 : (14)

This equals the total loss of agents

−
∑
i

〈gi〉= �2 ; (15)

so it is a measure of global waste. It also quanti�es the volatility of the market, i.e.,
the uctuations of the quantity A(t), and is related to the average “distance” between
agents (see Appendix A). Even though 〈A〉= 0, by symmetry, it may happen that for
a particular �, the aggregate quantity A(t) is nonzero on average, i.e., that 〈A�〉 6= 0.
In order to quantify this asymmetry, we introduce the quantity

H ≡ 〈A〉2 = �

2
+ 2

N∑
i=1


�i〈si〉〈si〉+
∑
i; j

�i�j〈si〉〈sj〉 : (16)

Note that the only di�erence with �2 lies in the diagonal terms (i= j) of the last sum.
Indeed, we assume that 〈sisj〉 = 〈si〉〈sj〉 for i 6= j, whereas 2 〈s2i 〉 ≡ 1 6= 〈si〉2. Indeed,
we can write

�2 = H +
N∑
i=1

�2i (1− 〈si〉2) : (17)

If H ¿ 0, the game is asymmetric: At least for some � one has that 〈A�〉 6= 0. This
implies that there is a best strategy a�best =−sign〈A�〉 which in principle could give a

1 This implies that the number of iterations must be proportional to P in any numerical simulation.
2 This amounts to say that the uctuations in time of si around its average 〈si〉 are uncorrelated with sj−〈sj〉.
This assumption fails when crowd e�ects occur, i.e., in the symmetric phase, and our theory will accordingly
fail to describe these e�ects.
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positive gain |〈A〉|−1. 3 In economic terms we may say that the system is not arbitrage
free, and that H is a measure of the perceived arbitrage opportunities present in the
market. As a function of �=P=N the system displays a phase transition with symmetry
breaking [13]: For �¿�c the symmetry between the two signs of A(t) is broken.
H plays a particular important role because in Refs. [6,7] it has been shown that

the inductive dynamics is equivalent to a dynamics which minimizes H in the dynam-
ical variables mi = 〈si〉. Therefore, the ground-state properties of the Hamiltonian H
yields the stationary state of the system. H is a spin-glass Hamiltonian where 
�i
are the local magnetic �elds and �i�j the coupling between two agents. These play
the same role as quenched disorder in spin glasses. This system is of mean �eld type
since interactions �i�j are in�nite ranged. For this reason, the statistical mechanics
approach to disordered systems [14,15] via the replica method yields exact results for
these models (see Appendix C).
The behavior of each agent is completely determined by the di�erence of her cumu-

lated payo�s �i. For long times, �i ' vit, where
vi = 〈�(t + 1)− �i(t)〉=−2〈A〉�i : (18)

If vi 6= 0, agent i shall stick to only one strategy si = sign vi, whereas if vi = 0, she
will sometimes use her ↑ strategy and sometimes her ↓ one. This is quanti�ed by mi,
and a global measure of the uctuations in the strategic choices of agents is given by

Q =
1
N

N∑
i=1

m2i : (19)

This quantity also emerges naturally from the replica approach where it plays a key
role.

4. Speculators with diversi�ed strategies

In the standard MG, it is assumed that the agents draw all their strategies randomly,
and independently. One can argue that the agents can be less simple-minded so that
they �rst draw a strategy, and then following their needs or what seems the best for
them, draw the others strategies. For instance, if S = 2, an agent can believe that one
strategy is enough and sticks to it (or takes two same strategies). On the contrary, an
agent might believe that it is better to have one strategy and another one which is quite
opposite. More generally, we suppose that all the agents 4 draw their second strategy
according to

P(a�↑ = a
�
↓) = c ∀� : (20)

3 Here the −1 comes from the fact that if the strategy is actually played A� → A� + a�best and “in principle”
means that A� would also change as a result of the fact that other agents would also react to the best strategy
agent.
4 This can be generalized to a c for each agent; exact results also arise from the replica calculus.
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Fig. 1. Phase diagram of the minority game with diversi�ed strategies. The phase transition in the standard
MG corresponds to the dash-dotted vertical line c = 1

2 . The circle are numerical data.

The parameter c counts the average fraction of histories for which the agents’ choices
are biased, that is, the average correlation between their two strategies. The standard
MG corresponds to the independent case c = 1

2 , while having only one strategy is
obtained with c=1. The other very special case is c=0: all agents have two opposite
strategies, thus there is no asymmetry in the outcome. As a result, the game is always
in the symmetric phase: as � is varied, no phase transition occurs. Increasing c has two
e�ects: on the one hand, it increases the bias of the outcome 
� ∼ √

cN , on the other,
it reduces the ability of the agents of being adaptative, since they learn something about
the game only when ��i 6= 0 (see Eq. (8)), which happens in average for (1 − c)P
histories. The fact that the biases depend on c too implies that the second-order phase
transition also occurs when this parameter is varied. With the replica formalism (see
Appendix C), one gets the phase diagram of the MG with parameter c (see Fig. 1). In
the standard MG, one varies � (dot-dashed vertical line). If one �xes � and changes
c, the symmetry is also broken (any horizontal line). Note that if c= 0 and �¿ 1, an
in�nitesimal c breaks the symmetry of the game.

5. Speculators and producers

Real markets are not zero sum games [16]. The fact that most participants are
interested in playing is beyond doubt. In real markets the participants can be grossly
divided into two groups: speculators and producers [16]. Producers can be characterized
by those using the market for purposes other than speculation. They need market for
hedging, �nancing, or any ordinary business. They thus pay less or no attention to
“timing the market”. Speculators, on the other hand, join the market with the aim of
exploiting the marginal pro�t pockets. The two groups were shown to live in symbiosis
[16]: the former inject information into the market prices, and the latter make a living
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Fig. 2. Gain of producers and speculators versus the number of producers (in P unit); the number of
speculators is �xed at N = 641 (c= 0; M = 8; S = 2; �= 0:4, average over 200 realizations). The lines are
theoretical predictions.

carefully exploiting this information. One may wonder why do producers let themselves
be taken advantage of. Our answer is that they have other, probably more pro�table
business in mind. To conduct their business, they need the market, and their expertises
and talents in other areas give them still better games to play. Speculators, being less
capable in other areas, or by choice, make do exploiting the “meager margin” left in
the competitive market.
In our MG, these general questions can be studied in detail. Producers will be limited

in choice, their activities outside the game are not represented. We de�ne a speculator
as an normal agent, and a producer as an agent limited to one strategy. Thus, the
latter have a �xed pattern in their market behavior and put a measurable amount of
information into the market, which is exploited by the speculators. We take a population
of N speculators and always de�ne �=P=N . We add �N heterogeneous producers, so
that � is the fraction of producers per speculator. The outcome is then

A� = A�spec + A
�
prod : (21)

The bias induced by the producers adds to the one caused by the speculators, so that
the total bias is of order

√
(c + �)N . Therefore, the phase transition can be obtained

at �xed P by varying either N; c, or the number of producers. Let us begin with the
last possibility. We �x c = 0; P = 28; N = 641 and plot the gains of the speculators
and producers as a function of the number of producers (see Fig. 2). In the symmet-
ric phase, the speculators wash out all the available information, thus, by symmetry,
the gain of the producers (squares) is zero. As the number of producers increases,
the gain of the speculators (circles) stays negative but grows monotonically, while the
gain of the producers remains zero as long as the symmetry of the outcome is not
broken. When the number of producers reaches a critical value, the speculators are
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Fig. 3. Gain of producers and speculators versus the number of speculators (in P unit); the number of
producers is �xed at 64 (c = 0; M = 8; S = 2, average over 200 realizations). The lines are theoretical
predictions.

Fig. 4. Gain of producers and speculators versus the number of speculators (in P unit); the number of
producers is �xed at 256 (c = 0; M = 6; S = 2, average over 200 realizations). The lines are theoretical
predictions.

no more able to remove all the available information, therefore the (second-order)
phase transition occurs (dashed line). Beyond this point, the producers lose more and
more, while some (frozen) speculators gain more than zero in average (see Section 8).
At one point, the gains of speculators and producers are the same. Finally, there are
enough producers to make the gain of the speculators positive on average.
As illustrated by Figs. 3 and 4, if the number of speculators changes and that of

producers is �xed the behavior is qualitatively the inverse of that of Fig. 2: The gain
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of producers increases as the number of producers grows; similarly, the gain of the
speculators decreases when N increases for su�ciently large N . If there are not enough
producers, the game is always negative sum for the speculators, and their gain has a
maximum (see Fig. 3).
We now expose exact analytical results concerning the gain of the two types of

agents. They rely on the generalization of the approach of Refs. [6,7]: the calculus
is carried out in detail in Appendix C. Let us introduce Gspec, the total gain of the
speculators and Gprod, the one of the producers. From Eq. (15)

Gspec + Gprod =−�2 : (22)

The results depend on the ratio � between the number of producers, on the number
of speculators and on c, the parameter introduced in the previous section. We obtain

�2

N
=
c + �+ (1− c)Q

(1 + �)2
+ (1− c)(1− Q) ; (23)

where � is the magnetic susceptibility of the system, and Q is de�ned in Section 3.2.
These two quantities depend on � and on (1 + �)=(1 − c) (see Appendix C). The
average gain per producer is

Gprod
�N

=− 1
1 + �

(24)

and the average gain per speculator is

Gspec
N

=−c + �+ (1− c)Q
(1 + �)2

− (1− c)(1− Q) + �
1 + �

: (25)

Figs. 2–4 completely agree with analytical results; note that the small deviations are
�nite size e�ects. The fact that the gains of producers and speculators only depend
on the ratio � and not on how many producers and speculators there are in the game
explains why Figs. 3 and 4 look very much like the inverse of Fig. 2.
As it emerges for the replica calculus, the critical point �c only depends 5 on (1 +

�)=(1−c) (see Fig. 5), that is, on the distribution of the quenched disorder. Numerical
data (circles) completely agree with our results. The vertical line corresponds to the
standard MG (� = 0 and c = 1

2). A more intuitive version of this phase diagram is
shown in Fig. 6 for c = 0.
The game becomes favorable, on average, for the speculators when their average

gain is greater than zero. Using Eq. (25), one can plot the curve of zero sum gain
for the speculators (see Fig. 6). One can see that the number of producers must be
greater than 1:868 : : : P (this value depends on c) in order to make the game positive
sum for the speculators; this is consistent with numerical simulations (Figs. 3 and 4).
The main message of these results is that producers always bene�t from the pres-

ence of speculators, and reversely: both types of agents live in symbiosis. Indeed, the

5 This explains why evolutionary schemes that preserve the distribution of the quenched disorder have the
same �c [17], while others that involve Darwinism, shift �c [1,9].
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Fig. 5. Phase diagram �c[(1 + �)=(1− c)].

Fig. 6. Phase diagram, and zero sum game for speculators with c = 0 at a �xed P.

producers introduce systematic biases into the market, and without speculators, their
losses would be proportional to these biases. The speculators precisely try to remove
this kind of bias, reducing also systematic uctuations in the market, thus reducing
the losses of the producers and their own losses. Moreover, the e�orts of speculators
yield a positive gain only if the number of producers is su�ciently large. In this re-
spect the symmetric phase, where producers do not lose and speculators lose a lot,
is unrealistic: real speculators would rather withdraw from a market which is in this
phase, thus increasing �, and recovering the asymmetric phase. This suggests that a
grand-canonical MG is much more realistic. 6 Here we briey present an over-simpli�ed

6 See also [18,19].
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Fig. 7. Average gain per agent versus the number of producers (in P units) in the grand canonical MG
(N = 107; M = 5; � = 0:3; S = 2; c = 1

2 , average over 500 realizations).

Fig. 8. Average number of speculators versus the number of producers (in P units) in the grand canonical
MG (N = 107; M = 5; � = 0:3; S = 2; c = 1

2 , average over 500 realizations).

“grand-canonical” MG. An agent enters into the market only when she has a strategy
with virtual points greater than zero. As a result, the game is always in the asym-
metric phase, but almost at the transition point: the average losses of the producers
are always extremely small (see Fig. 7). When the number of producers increases,
the a priori asymmetry of the outcome increases, and more and more agents actually
play the game (see Fig. 8), thus in this situation, the producers give incentives to play
to the speculators. Accordingly, the average gain of the speculators, is much higher in
this grand-canonical MG than in the corresponding canonical MG.
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Fig. 9. Normalized variance of the outcome with (opaque circles and without (black squares) noise traders;
the dotted line is the naive theoretical prediction. Inset: di�erence of variances with and without noise traders
(N = 101 speculators, 50 noise traders, average over 1000 realizations).

6. Speculators, producers and noise traders

The debate about what the noise traders do to a competitive market is not closed
[20]. In the economics literature a noise trader is not very precisely de�ned. Sometimes
they are synonym with speculators. We de�ne noise traders in the following way:
they choose their actions without any basis. Compared with speculators, who analyze
carefully the market information, noise traders take action in a purely random way (see
Appendix C). Noise traders may be speculators who base their action on astrology, on
“fengshui”, or on some “random number generators”. Our present model allows us to
evaluate the inuence of noise traders on the market. They increase the market volatility
�2, as shown in Fig. 9 and in Appendix C. Therefore, in principle, they do harm to
themselves as well as to other participants. Actually, in the linear-payo� version that
we consider, the average gain of speculators and producers is not much a�ected by
noise traders, since 〈Anoise〉=0. However, it is easy to see that in the original version,
where gi(t)=−ai(t) sign A(t), payo�s are reduced by the presence of noise traders (see
Appendix D).
Our numerical results of Fig. 9 also shows that deep in the symmetric phase, noise

traders reduces the volatility per agent �2=(N +Nnoise), when this becomes bigger than
one. This is easy to understand assuming that the only e�ect of noise traders is to
increase �2 by a constant equal to Nnoise ≡ �N . Let �20=N be the volatility per agent,
without noise traders (� = 0) and �2� that with noise traders. The variation in the
volatility per agent in the presence of noise traders is

�2�
N (1 + �)

− �20
N

' �20 + �N
N (1 + �)

− �20
N
=
1− �20=N
1 + 1=�

: (26)
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As illustrated by Fig. 9, numerical simulations globally con�rm these conclusions, but
also show that the e�ects of the noise traders are more pronounced than those predicted
by theory.

7. Market impact

In order to quantify the impact of an agent on the market let us �rst consider the
case of an external agent with S strategies: This agent does not take part in the game
but just observes it from the outside. From this position, each of her strategies gives
an average 7 virtual gain

us =−as〈A〉; s= 1; : : : ; S : (27)

Given that the strategies a�s are drawn randomly, us are independent random vari-
ables. Since us is the sum of P/1 independent variables a�s 〈A�〉=P, their distribution
is Gaussian with zero mean and variance

Var(us) =
1
P2

P∑
�=1

Var(a�s )〈A�〉2 =
H
P
:

Clearly, one of these strategies, that with us∗ = maxs us, is superior to all others. 8 It
would be most reasonable for this agent to just stick to this strategy.
However, the same agent inside the game will typically use not only strategy s∗. This

is because every strategy, when used, delivers a real gain which is reduced with respect
to the virtual one by the “market impact”. Imagine the “experiment” of injecting the
new agent in a MG. Then 〈A�〉 → 〈A�〉+a�s , where, in a �rst approximation, we neglect
the reaction of other agents to the new-comer. Then the real gain of the new-comer is

gs ∼= −as〈A〉 − 〈as as〉= us − 1 : (28)

The agent will then update the scores Us(t) with the real gain gs for the strategy
she uses and with the virtual one us′=gs′+1−asas′ , for the strategies she does not use
(in the following, we neglect the term asas′). Therefore, inductive agents over-estimate
the performance of the strategies they do not play. Then if strategy s is played with a
frequency ps, the virtual score increases on average by

�Us =Us(t + 1)− Us(t) = psgs + (1− ps)(gs + 1)
= gs − ps + 1 (29)

at each time step (on average). If the agent ends up playing only n out of her S
strategies with some frequency ps¿ 0, it must be that the virtual score increases �Us
are all equal for these strategies and the virtual scores of strategies not played are lower.

7 The average is meant over a long time here.
8 The distribution of us∗ can be easily computed using extreme statistics. For S/1 typically us∗ '√
2H log(S)=P.
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Fig. 10. Ratio of real H ′ over approximated H ′ ' H − 2|〈A〉| + 1 versus � (N = 101, average over 100
realizations).

More precisely, let s=1; : : : ; n label the strategies which are played and r=n+1; : : : ; S
those which are not played. It must be that

�Us = gs − ps + 1 = v; s= 1; : : : ; n ; (30)

�Ur = gr + 1¡v; r = n+ 1; : : : ; S : (31)

These equations yield the number n of strategy that this agent will use. Normalization
of ps in the �rst equation gives the average virtual gain v of the agent, which is

v=
1
n

n∑
s=1

gs − 1
n
+ 1 : (32)

Using ps=gs+1−v, we can compute the real gain of the inductive agent g=
∑n

s=1 psgs.
Summarizing, we �nd that inductive agents mix their best strategy with less-

performing ones. This is a consequence of the fact that they neglect their impact
on the market.
So far, we did not take into account the reaction of other agents to the new-comer.

In order to quantify this e�ect, let us consider a MG in the asymmetric phase, and let
us add a new agent with the best strategy a� = −sign 〈A�〉. This gives us an idea of
this e�ect in the extreme case and we expect that for a randomly drawn strategy the
e�ect will be smaller. Neglecting the reaction of other agents, we �nd that the available
information with the new-comer should be H ′ ' H − 2|〈A〉| + 1. Fig. 10 shows that
the reaction of all agents is indeed negligible, except near the critical point, where H
is of the order of 1.
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8. Gain

In this section we show how the behavior and the gain of each agent (speculator as
well as producer) depends on her microscopic constitution and on the asymmetry of
the outcome A(t) in the asymmetric phase. Let us denote the gain of agent i by gi; by
de�nition,

gi =−〈Aai〉 : (33)

In the asymmetric phase, since the stationary state is mean �eld, 〈sisj〉 = mimj.
Consequently, by expanding Eq. (33) one obtains

gi =−〈A〉!i − 〈Asi〉�i
=−〈A〉!i − 〈A〉�imi − �2i (1− m2i ) : (34)

Remember that the stationary behavior of agent i is described by vi =−2〈A〉�i (see
Section 3). If an agent is non-frozen, vi = 0, while mi =−sign vi otherwise, hence the
gain of a generic agent i is

gi =−〈A〉!i + |〈A〉�i| − �2i (1− m2i ) : (35)

Note that the second term of the above equation vanishes for a non-frozen agent j and
therefore

gj =−〈A〉!j − �2j (1− m2j ) non-frozen : (36)

On the other hand, the third term of Eq. (35) vanishes if agent k is frozen:

gk =−〈A〉!k + |〈A〉�k | frozen : (37)

In Eqs. (36) and (37), the gain of each agent is expressed as her internal constitution,
allowing us to interpret what does the gain of a general agent depends on. In both
equations, the �rst term −〈A〉!i, which represent how much the agents lose due to their
bias, is on average negative, due to the impact this bias has on the market. The second
term in Eq. (36) is always negative, and represents the losses due to the switching
between strategies, which, as shown above, arises from the neglect of market impact.
Since the probability distribution function of mi is not Gaussian [6], this term gives
rise to an non-Gaussian distribution of gj for non-frozen agents. The average gain of
the rth best agent is represented in Fig. 11.
By contrast, the term �2k(1 − m2k) disappears for a frozen agent because m2k = 1. It

is replaced by |〈A〉�k | which is always positive and which measures how well agent k
exploits the available information. Therefore, in average, the frozen agents gain more
than the non-frozen ones. This is clearly illustrated in Fig. 12 which also shows that
Eqs. (36) and (37) are exact. Finally, a producer is of course frozen, and her gain is
always lower than zero in this phase, since she has |〈A〉�k |= 0.
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Fig. 11. Bar-code structure of the rth best agent’s gain (�=10; M=10; S=2, average over 300 realizations).

Fig. 12. Theoretical gain versus experimental gain showing that the frozen agents gain more than the active
ones (� = 0:5, M = 6).

9. Privileged agent or insider-trading

In this section we consider a MG where a particular agent has di�erent characteristics.
In particular, we address the question of what additional resources would be advanta-
geous for this agent and in which circumstances. In the �rst subsection, we consider an
agent with S ′ strategies (with S ′¿S, where S is the number of strategies assigned to
other agents). The last two subsections are devoted to the study of e�ects of asymmet-
ric information, in which an agent has access to privileged information which the other
cannot access. This can be achieved in several ways. First, we consider the case of a
pure population with memory M and one agent with a longer memory M ′. Then we
consider the case of an agent who knows, in advance, how a subset of agents plays.

9.1. An agent with S ′ strategies

In the symmetric phase, no matter how many strategies an agent has, there is no
possibility of gaining. Therefore we focus in this section on the asymmetric phase.
As shown in Section 7, inductive agents over-estimate the performance of the strate-

gies they do not play.
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Let us consider now the case where an agent with S ′ strategies enters into a MG.
As shown in Section 7, to a good approximation, the value of H=P is the only relevant
information we need to retain of the stationary state of the MG without the special
agent. This quantity encodes all other informations such as the number of producers,
the number of strategies played by the agents in the MG and the value of �.
We carried out numerical simulations, and compared it to the analytical results de-

rived in Section 7. These are shown in Fig. 13, for H=P = 0:5, and 14, for H=P = 1.
The virtual gain v is always larger than the actual gain g. Even though g is less than
the gain agents would get playing only their best strategy E[gs∗ ] (maximal gain), it is
not much smaller and has the same leading behavior g˙

√
ln S.

Numerical simulations agree well with analytical results, apart from �nite size e�ects
which become more pronounced if H=P is small. 9

Figs. 13 and 14 refer to values of H=P which are realistic of MG with producers. A
moderately large S ′ su�ces to obtain a positive gain g¿ 0. With S = 2 and without
producers H=P ∼ 0:1 at most. For these values the analytic approach suggests that,
even playing only her best strategy an agent would need S ′¿ 750 strategies to have
a positive gain, whereas inductive agents would need more than S ′ ' 2400 strategies
to obtain a positive gain. The same agent would �nd that her virtual gain becomes
positive with only S ′¿ 8 strategies. These results for H=P = 0:1 su�er from strong
�nite size e�ects (which indeed are of the order of P=H). One would need system
sizes N which are well beyond what our computational resources allow to con�rm
these conclusions.
It is also interesting to observe that the number of strategies actually used by the

inductive agent increases with S (sub-linearly) and it decreases as H=P increases
(see Figs. 13 and 14). That means that if there is more exploitable information in
the system, agent’s behavior becomes more peaked on the best strategy.

9.2. M ′¿M

Let us consider the case of a pure population with memory M and one agent with
a longer memory 10M ′. Fig. 15 plots the gain of such an agent with M ′ =M + 1 as
a function of �. The average gain of all agents is also shown for comparison. In the
asymmetric phase the special agent receives a lower payo�, which can be understood
by observing that she has a number of histories P′ = 2M

′
= 2P bigger than that of

the pure population. Thus her e�ective �′ = 2� is larger, which is detrimental in the
asymmetric phase.
The gain of the special agent is the same as that of normal agents at the point where

there is neither persistence, nor anti-persistence (� ' 0:25 for M = 3, and �c in the
thermodynamic limit).

9 This is mostly due to the term which we have neglected in Section 7: it is typically of the order of P=H .
10 In this kind of numerical simulations, one has to keep the dynamics of histories.
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Fig. 13. Upper graph: average number of played strategies (circles) versus S′. Below: average virtual (dia-
monds) and actual (squares) gains versus S′ for H=P=0:5, from top to below (averages over 500 realizations).
The lines are theoretical predictions.

Fig. 14. Upper graph: average number of played strategies (squares) versus S′. Below: average virtual (dia-
monds) and actual (circles) gains versus S′ for H=P=1, from top to below (averages over 500 realizations).
The lines are theoretical predictions.

In contrast, in the symmetric phase, the game is symmetric for normal agents but their
anti-persistent behavior produces arbitrages who can be exploited by agents having a
bigger memory. Indeed, as � decreases, the available information HM ′ for the privileged
agent grows. 11 As a result the gain of the privileged agent becomes larger than that of
other agents and as � becomes small enough, it becomes positive.

11 HM ′ is de�ned as H = 〈A〉2, but with an average over �′ = 1; : : : ; 2P.
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Fig. 15. Upper graph: normalized available information for M and M + 1. Lower graph: Gain of an agent
with M + 1 within a pure population with M = 3 (S = 2, average over 3000 realizations).

Fig. 16. Gain of an agent with M ′ =M +�M within a pure population with M = 3 (�= 0:1, average over
1000 realizations.

Can the anti-persistence be exploited even more if one increases M ′? Fig. 16 answers
clearly no. This is not surprising since again the e�ective � is bigger and bigger as M ′

is increased. At the same time, the available information increases, but too slowly.

9.3. Espionage

Some agents may have access to some information about other agents. This is the
case of a stock broker who knows his clients’ orders before execution, hence he has
privileged information and should be barred from trading. When there is no available
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Fig. 17. Gain of a spy and average gain of all agents versus � (N = 101, NB = 3, 100P iterations, average
over 100 realizations).

information, as in the symmetric phase, an agent who has access to asymmetric in-
formation can expect at least to lose much less than the other agents, or even have
a positive gain. Also, since having access to a little information is greatly preferable
to no information at all, only a very limited amount of information is needed to get
a considerable advantage. Suppose that agent b knows the sign sB of the aggregate
actions of a subset B of other agents. Let B= |B| be the number of agents in B. Then
sB(t)= sign

∑
i∈B ai(t). She can exploit this supplementary information by having two

virtual values U+
b; s(t) and U

−
b; s(t) for each of her strategies. In other words, if agent b

knows that sB(t) = +1 before having to choose, she takes her decision according to
the scores U+

b; s(t), that is,

sb(t) = arg max
s=1;:::; S

U+
b; s(t) ; (38)

she updates the scores of her strategies according to

U+
b; s(t + 1) = U

+
b; s(t)− a�(t)b; s A

�(t) (39)

and analogously if sB(t) =−1.
What is the kind of the supplementary information this agent has access to?
Since the outcome is anti-persistent in the symmetric phase and persistent in the

asymmetric phase, only at the critical point there is no long-term correlation in
the outcome [13]. Accordingly, the spy always gains more than the average, except
at the critical point where she gains the same (see Fig. 17). With this setting, the agent
has access in particular to the anti-persistence of the symmetric phase, explaining why
even if only one agent is spied, the gain of the broker is much bigger (Fig. 18).
Finally, the comparison between the two types of asymmetric information we have

considered shows that it is much more interesting to spy than to have a larger memory:



306 D. Challet et al. / Physica A 276 (2000) 284–315

Fig. 18. Gain of a spy versus the number of spied agents (N=1001, �=0:15, average over 1000 realizations).

in the former case, one is sure to win more than the normal agents, except at the critical
point.

10. Conclusions

In this work we have shown how to ask questions about real market mechanisms in
a toy model. In spite of the severe simpli�cation of the MG, with little modi�cation
one is able to study a broad spectrum of problems which could be dreamed of pre-
viously. The central result is to show that agents with limited rationality (or limited
information processing power) can only make a market marginally e�cient. To the �rst
approximation one can say that these inductive players can maintain an approximate
equilibrium, which is the central result of the El-Farol model. But studying carefully
the uctuations one �nds that the fact that the market is more or less e�cient does
not imply that one can stop playing and sit at a randomly chosen site. Doing so would
make the model less e�cient. It is around this residual (marginal) ine�ciency that the
players are busy about.
With the introduction of producers the game can be of positive sum. We have shown

how producers and speculators live in a symbiosis: producers are passive players who
do not try to switch strategies. The reason is that they voluntarily give up the specula-
tion opportunities because they have outside business in mind. Thus, producers inject
information that the eager speculators are just happy to feed on. The speculators, while
making away pro�ts, perform a social function by providing liquidity thus reducing
producers’ market impact. We believe this is also true in real markets. Numerous other
results show that it is now possible to systematically study markets with heterogeneous
agents, with real questions in mind.
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Appendix A. Geometric and algebraic approaches to the MG

This appendix is devoted to giving intuitive but rigorous views of what happens in
the MG.

A.1. Geometric approach to the MG

The global behavior of the MG, measured by �2, can be quite well understood with a
geometrical approach. Indeed, it is directly related to a much more intuitive geometrical
concept: the Hamming distance between agents [9], which is de�ned as follows for
agents i and j:

di; j =
(ai − aj)2

4
=
1
2
− 1
2
aiaj : (A.1)

It is worthwhile to note that 1−di; j equals the probability that both agents take the same
action for a randomly drawn history, so for an agent, maximizing her distance with
respect to all other agents is equivalent to maximizing her gain. Since the game is
dynamical, one has to consider the time average of the actual Hamming distance
between those two agents

〈di; j〉= 1
2 − 1

2 〈aiaj〉 : (A.2)

The average Hamming distance per agent is then

〈d〉= 1
N (N − 1)

∑
i; j

〈di; j〉= 12 − 1
2N (N − 1)

∑
i; j

〈aiaj〉 : (A.3)

The relationship between the distance and the uctuations arises naturally by rewriting
the latter as

�2 = N +
∑
i 6=j

〈aiaj〉 ; (A.4)

that is, as a sum over random uctuations and correlations. Putting Eqs. (A.3) and
(A.4) together, one �nds

�2

N
= 1− 2(N − 1)

(
1
2
− 〈d〉

)
: (A.5)

This equation 12 links the geometrical [9,12] and the analytical approaches [6,13]. It
states that �nding the average Hamming distance between the agents is equivalent to
determining �2 by the analytical tools used in [6,7,13]. In general, it is impossible to
�nd the average distance with a geometrical approach due to the fact that the Hamming
distance is not transitive. 13 However, in the so-called reduced space of strategies (RSS)
[9], the distance is transitive, consequently Johnson et al. could �nd an approximate

12 It is exact for any S; even more, it remains exact if agents do not have the same number of strategies.
13 The knowledge of di; j and di;k does not allow that of dj;k .
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analytical expression of 〈d〉, and, by implicitly using Eq. (A.5) (which is straightfor-
ward in the RSS), they also gave an approximative expression of �2 [21]. An equation
quite similar to Eq. (A.5) also appears in [22], where it is shown that perceptrons
playing the MG can cooperate.

A.2. Algebraic approach to the phase transition

We expose the algebraic origin of the phase transition. As it has been recalled, the
agents actually try to minimize the available information H [6,7], and can actually
cancel it when �¡�c. Let us see why. Since H is a sum of P non negative averages
〈A〉2, H = 0 only if all averages are zero, namely 〈A〉= 0 ∀�, or equivalently

N∑
i=1

��i 〈si〉=−
� ∀� : (A.6)

These are P linear equations in N variables. However, the N variables mi=〈si〉 are
restricted to the [− 1; 1] interval. Above �c there are N� variables which are frozen at
the boundary of this interval (mi = ±1). Therefore there are (1 − �)N free variables
only. As shown in Refs. [6,7], the point �c marks the transition below which the
system of equations (A:6) becomes degenerate, i.e., when there are more variables
than equations. Exactly at �c the number of free variables (1 − �)N exactly matches
the number of equations P. Dividing this equation by N gives an equation for �c,

�c = 1− � (A.7)

which is indeed con�rmed numerically to a high accuracy.
When �¡�c, there are more free variables (N indeed) than equations: the solu-

tions of Eq. (A.6) then belong to a subspace of dimension N − P. This allows the
anti-persistent behavior to take place, because the system is free to move on this sub-
space. In the special case c = 0, since there is no bias 
� = 0. The linear system
of equation is then homogeneous and the solution 〈si〉 = 0 for all i always exists. In
particular, if �¿ 1, this solution is unique, hence �2=N=1. When �¡ 1, a subspace of
solutions of dimension N − P arises, and the anti-persistent behavior also takes place.
Note that in this case, the system is always in the symmetric phase, therefore there is
no phase transition.
This argument easily generalizes to S ¿ 2 strategies [7]. If agents use, on average,

n(S) strategies (and S − n(S) are never used) the number of free variables is Nn(S).
There are P plus N equations which these have to satisfy, where the latter N comes
from the normalization condition on the frequency with which each strategy is used.
At the critical point, these two numbers are equal, and we �nd

nc(S) = �c(S) + 1 : (A.8)

At the critical point nearly one half of the strategies yield positive virtual gain and are
used, whereas the others are not used [7]. From this we �nd

�c(S) ∼= �c(2) + S2 − 1 : (A.9)
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This shows that actually �c grows linearly with S, but in a slightly less-simple way
than that previously believed [2,9,13,21].
Let us now show how the behavior of the agents is related to persistence/anti-

persistence. We de�ne W as the average over the agents of v2i :

W =
1
N

N∑
i=1

(vi)2 (A.10)

= lim
T→∞

1
T 2

T∑
t; t′=1

N∑
i=1

1
N
��(t)i ��(t

′)
i A(t)A(t′) ; (A.11)

since the ��i are independently drawn,

1
N

N∑
i=1

��(t)i ��(t
′)

i = (1− c)��(t);�(t′) + O(1=
√
N ) : (A.12)

Thus for large N

W ' lim
T→∞

1
T

T∑
t=1

〈A(t)A(t − �)|�(t) = �(t − �)〉 ; (A.13)

where 〈A(t)A(t − �)|�(t) = �(t − �)〉 means that the average is taken over time � =
0; : : : ; t − 1 for all t and � such that �t = �t−�, and summed over all histories. A
closely related quantity was �rst studied in Ref. [13] where it was shown to quantify
anti-persistence in the symmetric phase.
Note that this equation implies that there can be no frozen agents unless the outcome

exhibits persistence (i.e., 〈A(t)A(t − �)|�(t) = �(t − �)〉 6= 0), which agrees with the
analysis of [13]. In this case we �nd

W ' H
N
: (A.14)

Furthermore, the condition of freezing vi 6= 0 is equivalent to [13]
�i�i ¡ |h̃i| ; (A.15)

where h̃i=
�i+
∑

j 6=i �i�j〈sj〉. It is worthwhile to see that �i�i is the internal hamming
distance. Eqs. (A.13) and (A.14) give global conditions whether there can be frozen
players or not, while Eq. (A.15) give conditions on individual freezing.

Appendix B. The MG in biology

The MG model has another important application in biology: the sex ratio of 50 : 50.
In the widely read book of Richard Dawkins “Sel�sh Gene” [23], the Fischer theory
was brilliantly explained: if in the o�spring pool either males or females were in
minority, reproductive strategies for giving birth to a member in that minority would
enjoy a genetic advantage linearly proportional to the deviation from the 50 : 50 ratio.
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The stable ratio is thus dynamically maintained. Brian Arthur’s “El Farol” model, is
also of the same genre, to show that using alternative strategies can lead to equilibrium.
MG goes one step further: while the equilibrium point is previously solved in di�erent
contexts by Fisher, Arthur et al., we concentrate on more re�ned questions.

Appendix C. Replica method for the MG

For the sake of generality, we consider three di�erent population of agents:
(1) The �rst population is composed of N speculators. These are adaptive agents

and they have each two speculative strategies a�↑; i, a
�
↓; i for i=1; : : : ; N and �=1; : : : ; P.

These are drawn at random from the pool of all strategies, independently for each
agent. We allow a correlation among the two strategies of the same agent:

P(a↑; a↓) =
c
2
[�a↑ ;+1�a↓ ;+1 + �a↑ ;−1�a↓ ;−1] +

1− c
2
[�a↑ ;−1�a↓ ;+1 + �a↑ ;−1�a↓ ;+1] :

(C.1)

Note that, for c=0 agents choose just one strategy a↑ and �x a↓=−a↑ as its opposite,
whereas for c = 1 they have one and the same strategy a↑ = a↓. The original random
case [1,8] corresponds to c = 1

2 . These agents assign scores Us; i(t) to each of their
strategies and play the strategy si(t) with the highest score, as discussed in the text.
Therefore for speculators

aspec(t) = a
�(t)
si(t); i : (C.2)

(2) Then we consider N indepprod = �N producers: They have only one randomly and
independently drawn strategy b�i so

aprod(t) = b
�(t)
i : (C.3)

Producers have a predictable behavior in the market and they are not adaptive. Instead
of �N independent producers one can also consider N depprod correlated producers who all
have the same predictable behavior b�prod.
(3) Finally, we consider �N noise traders. These are de�ned as agents whose actions

are given by

anoise(t) = random sign : (C.4)

Each noise trader as a random number generator which is independent of those other
agents.
It has been shown [6,7] that the stationary state properties of the MG are described

by the ground state of H . Note that this approach fails however to reproduce the
anti-persistent behavior which is at the origin of crowd e�ects in the symmetric phase.
In our case

A(t) = Aspec(t) + Aprod(t) + Anoise(t) ; (C.5)
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where

Aspec(t) =
N∑
j=1

a�(t)sj(t); j (C.6)

and

Aprod(t) =
�N∑
j=1

b�(t)j ≡ A�(t)prod (C.7)

and Anoise(t) = 2k(t) − �N , where k(t) is a binomial random variable with P(k) =
( �Nk )2

−�N . Since H = 〈A〉2 and the contribution of noise traders to 〈A�〉 vanishes
〈Anoise〉 = 0, the collective behavior of the system is independent of �. Noise
traders shall contribute a constant �N to �2 and will not a�ect other agents. This
only holds in the asymmetric phase (see text). We can then reduce to the study of
speculators and producers only.
Let us de�ne, for convenience, A� = A�spec + �A

�
prod, where

A�spec =
N∑
i=1

[
a�↑; i

1 + si
2

+ a�↓; i
1− si
2

]
(C.8)

and A�prod is given in Eq. (C.7). Here si is the dynamical variable controlled by spec-
ulator i. We shall implicitly consider directly time-averaged quantities, so si is a real
variable in [ − 1; 1] rather than a discrete one. The parameter � is inserted so that,
once we have computed the energy H = (Aspec + �Aprod)2 we can compute the total
gain Gprod of producers by

Gprod ≡ −AAprod =− 1
2
@H
@�

∣∣∣∣
�=1

:

The gain of speculators is obtained subtracting this contribution and that of noise traders
from the total gain −�2

Gspec =−�2 + �N − Gprod : (C.9)

C.1. Replica calculation

The zero temperature behavior of the Hamiltonian H can be studied with spin-glass
techniques [15,14]. We introduce n replicas of the system, each with dynamical vari-
ables si;c, labeled by replica indices c, d= 1; : : : ; n. Then we write replicated partition
function

〈Zn(�)〉= Trs
∏
�; c

〈e−�=P(A�c )2〉a;b ; (C.10)

where the average is over the disorder variables a�s; i, b
�
i and Trs is the trace on the

variables si;c for all i and c. Following standard procedures [15,14], we introduce a
Gaussian variable z�c so that we can linearize the exponent in Eq. (C.10). This allows us
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to carry out the averages over a’s and b’s explicitly. Then we introduce new variables
Qc;d and rc;d with the identity

1 =
∫
dQc;d�

(
Qc;d − 1

N

∑
i

si; csi;d

)

˙
∫
drc;d dQc;de

−��2=2rc; d(NQc; d−
∑

i
si; csi; d)

for all c¿d, which allow us to write the partition function (to leading order in N ) as

〈Zn(�)〉=
∫
dQ̂ dr̂e−Nn�F(Q̂; r̂)

with

F(Q̂; r̂) =
�
2n�

Tr log T̂ +
��
2n

∑
c6d

rc;dQc;d − 1
n�
log[Trs e

��2=2
∑

c6d
rc; dscsd] :

(C.11)

The matrix T̂ is given by

Ta;b = �a;b +
2�
�
[c + �+ (1− c)Qa;b]:

For correlated producers we would have obtained the same result but with � → � +
�2N�2, where � measures the bias of producers towards a particular action for a given
�, or equivalently the correlation between the actions of two distinct producers. More
precisely, �2 is the average of b�i b

�
j for i 6= j and for all �. Therefore, the limit �→ ∞

also corresponds to a small share of producers �.1 with a small bias � 6= 0. Note that
a bias � ∼√

N corresponds indeed to ∼ N independent producers. Equivalently ∼√
N

correlated producers, with � �nite are equivalent to ∼ N independent producers.
With the replica symmetric ansatz

Qc;d = q+ (Q − q)�c;d; rc;d = 2r + (R− 2r)�c;d
the matrix T̂ has n− 1 degenerated eigenvalues �0 = 1 + 2(1− c)�(1− q)=� and one
eigenvalue equal to �1 = 2�[c + � + (1 − c)q]=�n + 1 + 2(1 − c)�(1 − q)=� therefore,
after standard algebra,

F (RS)(q; r) =
�
2�
log
[
1 +

2(1− c)�(Q − q)
�

]
+

�[c + �+ (1− c)q]
�+ 2(1− c)�(Q − q)

+
��
2
(RQ − rq)− 1

�

〈
log
∫ 1

−1
ds e−�Vz(s)

〉
; (C.12)

where we found it convenient to de�ne the “potential”

Vz(s) =−��(R− r)
2

s2 −√
�r zs (C.13)

so that the last term of F (RS) looks like the free energy of a particle in the interval
[− 1; 1] with potential Vz(s) where z plays the role of disorder.
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The saddle point equations are given by

@F (RS)

@q
= 0⇒ r =

4(1− c)[c + �+ (1− c)q]
[�+ 2(1− c)�(Q − q)]2 ; (C.14)

@F (RS)

@Q
= 0⇒ �(R− r) =− 2(1− c)

�+ 2(1− c)�(Q − q) ; (C.15)

@F (RS)

@R
= 0⇒ Q = 〈〈s2〉〉 ; (C.16)

@F (RS)

@r
= 0⇒ �(Q − q) = 〈〈sz〉〉√

�r
; (C.17)

where 〈〈·〉〉 stands for a thermal average over the above-mentioned one-particle system.
In the limit � → ∞ we can look for a solution with q → Q and r → R. It is

convenient to de�ne

� =
2(1− c)�(Q − q)

�
and �=−

√
�
r
�(R− r) (C.18)

and to require that they stay �nite in the limit � → ∞. The averages are easily
evaluated since, in this case, they are dominated by the minimum of the potential
Vz(s) =

√
�r(�s2=2− zs) for s ∈ [− 1; 1]. The minimum is at s =−1 for z6− � and

at s=+1 for z¿�. For −�¡ z¡� the minimum is at s= z=�. With this we �nd

〈〈sz〉〉= 1
�
erf
(
�√
2

)
(C.19)

and

〈〈s2〉〉= Q = 1−
√
2
�
e−�

2=2

�
−
(
1− 1

�2

)
erf
(
�√
2

)
: (C.20)

With some more algebra, one easily �nds

� =
[
�=erf

(
�√
2

)
− 1
]−1

: (C.21)

Finally, � is �xed as a function of � by the equation√
2
�
e−�

2=2

�
+
(
1− 1

�2

)
erf
(
�√
2

)
+
�
�2
=
1 + �
1− c : (C.22)

Note that � only depends on the combination (1 + �)=(1 − c) which runs from 1 –
for � = c = 0, i.e., no producers and “perfect” speculators – to ∞. The latter limit
occurs either if c → 1, i.e., when speculators become producers, or if � → ∞ (many
producers).
Eq. (C.21) means that � diverges when � → �c(�; c)+, which then implies that at

the critical point

erf
(
�√
2

)
= �= �c : (C.23)
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Substituting this in the other saddle point equations, yields the following equation for
�= �c:√

2
�
e−�

2
c =2

�c
+ erf

(
�c√
2

)
=
1 + �
1− c : (C.24)

The free energy, at the saddle point, for �→ ∞, is

F (RS) =
c + (1− c)Q + �

(1 + �)2
; (C.25)

where Q and � take their saddle point values, Eqs. (C.20) and (C.21).
The gain of producers, from Eq. (C.12), is

Gprod
N

=− �
1 + �

(C.26)

and that of speculators is obtained from Eq. (C.9).
At �c �→ ∞ so that F (RS) → 0. Note that the loss of producers vanishes Lprod → 0

as � → �c, whereas the loss of speculators Lspec = (1 − Q)=2 is always positive
below �c.
The phase diagram is shown in Fig. 5. here we discuss some limits.

Appendix D. The sign MG

The original MG [1] is de�ned with payo�s

gi =−ai(t)sign A(t) (D.1)

Over a long period of time T , the change in �i(t) is given by

�i(t + T )− �i(t)
T

=
−2
T

T−1∑
�=t

��(�)i sign A(�)

' −2
P

P∑
�=1

[2Prob{A(�)¿ 0|�(�) = �} − 1]��i : (D.2)

Then, for any �xed �, the relevant quantity is the probability that A(t)¿ 0, when
�(t)=�. This can be computed within our mean-�eld approximation: Indeed if 〈si〉=mi
we can regard si as a random variable with distribution

P(si =±1) = 1± mi
2

:

Then, the relation A�(t)(t) = 
� +
∑N

i=1 �
�
i si implies that we can consider A

� as a
Gaussian variable with variance

Var(A�) =
N∑
i=1

��2i (1− m2i ) + �N :
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This allows us to compute

Prob{A(�)¿ 0|�(�) = �}= 1
2
erfc

(
〈A�〉√
2Var(A�)

)
:

Note that close to the critical point �c, 〈A�〉 is very small compared to Var(A�), which
means that it is legitimate to expand the erfc function to a linear order. This gives us
back a linear minority game, but with

gi =− ai(t)A(t)√
2Var(A�)

: (D.3)

Note, then that when � increases the gains for each speculator decreases. This is actually
true even away from �c. It is indeed easy to check that 〈sign A(t)〉 decreases as �
increases.
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