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We present a simple model of a stock market where a random communication structure
between agents generically gives rise to heavy tails in the distribution of stock price
variations in the form of an exponentially truncated power law, similar to distributions
observed in recent empirical studies of high-frequency market data. Our model provides a
link between two well-known market phenomena: the heavy tails observed in the
distribution of stock market returns on one hand and herding behavior in financial markets
on the other hand. In particular, our study suggests a relation between the excess kurtosis
observed in asset returns, the market order flow, and the tendency of market participants to
imitate each other.
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1. INTRODUCTION

Empirical studies of the fluctuations in the price of various financial assets have
shown that distributions of stock returns and stock price changes have fat tails that
deviate from the Gaussian distribution [Mandelbrot (1963, 1997), Pagan (1996),
Campbell et al. (1997), Cont et al. (1997), Guillaume et al. (1997), Pictet et al.
(1997)] especially for intraday timescales [Cont et al. (1997)]. These fat tails,
characterized by a significant excess kurtosis, persist even after accounting for
heteroskedasticity in the data [Bollerslev et al. (1992)]. The heavy tails observed
in these distributions correspond to large fluctuations in prices, “bursts” of volatility
that are difficult to explain only in terms of variations in fundamental economic
variables [Shiller (1989)].

The fact that significant fluctuations in prices are not necesarily related to the
arrival of information [Cutler (1989)] or to variations in fundamental economic
variables [Shiller (1989)] leads us to think that the high variability present in stock
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market returns may correspond to collective phenomena such as crowd effects or
“herd” behavior.

Although herding in financial markets is by now relatively well documented
empirically, there have been few theoretical studies on the implications of herding
and imitation for the statistical properties of market demand and price fluctuations.
In particular, some questions that one would like to have answered are: How
does the presence of herding modify the distribution of returns? What are the
implications of herding for relations between market variables such as order flow
and price variability? These are some of the questions that have motivated our
study.

The aim of the present study is to examine, in the framework of a simple model,
how the existence of herd behavior among market participants may generically lead
to large fluctuations in the aggregate excess demand, described by a heavy-tailed
non-Gaussian distribution. Furthermore, we explore how empirically measurable
quantities such as the excess kurtosis of returns and the average order flow may
be related to each other in the context of our model. Our approach provides a
quantitative link between the two issues discussed earlier: theheavy tailsobserved
in the distribution of stock market returns on the one hand and theherd behavior
observed in financial markets on the other hand.

The article is divided into four additional sections. Section 2 reviews well-known
empirical facts about the heavy-tailed nature of the distribution of stock returns and
various models proposed to account for it. Section 3 presents previous empirical
and theoretical work on herding and imitation in financial markets in relation to
the present study. Section 4 discusses the statistical properties of excess demand
resulting from the aggregation of a large number of random individual demands
in a market. Section 5 defines our model and presents analytical results. Section 6
interprets the results in economic terms, compares them to empirical data and
discusses possible extensions. Details of calculations are given in the appendices.

2. THE HEAVY-TAILED NATURE OF ASSET RETURN DISTRIBUTIONS

It is by now well known that the distribution of returns of almost all financial
assets—stocks, indexes, and futures—exhibits a slow asymptotic decay that de-
viates from a normal distribution. This is quantitatively reflected in the excess
kurtosis, defined as

κ = µ4

σ 4
− 3, (1)

whereµ4 is the fourth central moment andσ is the standard deviation of the
returns. The excess kurtosisκ should be zero for a normal distribution but ranges
between 2 and 50 for daily returns [Campbell et al. (1997), Pagan (1996)] and
is even higher for intraday data. Studies of the distribution of returns reveal the
presence of heavy tails, fatter than those of a normal distribution but thinner than
a stable Pareto–L´evy distribution [Cont (1998)]. In some cases the tail has been
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represented by an exponential form [Cont et al. (1997)] and in other cases by a
power law with tail index between 3 and 4 [Pagan (1996)].

2.1. Statistical Mechanisms for Generating Heavy Tails

Many statistical mechanisms have been put forth to account for the heavy tails ob-
served in the distribution of asset returns. Well-known examples are Mandelbrot’s
stable-Paretian hypothesis [Mandelbrot (1963)], the mixture-of-distributions hy-
pothesis [Clark (1973)], and models based on conditional heteroskedasticity [Engle
(1995)].

It is well known that in the presence of heteroskedasticity, the unconditional
distribution of returns will have heavy tails. In most models based on heteroskedas-
ticity, the process of return is assumed to be conditionally Gaussian: The shocks
are “locally” Gaussian and the non-Gaussian character of the unconditional dis-
tribution is an effect of aggregation. It is obtained by superposing a large number
of local Gaussian shocks. In this description, sudden movements in prices are
interpreted as corresponding to a high value of conditional variance.

On one hand, it has been shown that although conditional heteroskedasticity
does lead to fat tails in unconditional distributions, ARCH-type models cannot
fully account for the kurtosis of returns [Hsieh (1991), Bollerslev et al. (1992)].
On the other hand, from a theoretical point of view, there is no a priori reason
to postulate that returns are conditionally normal: although conditional normality
is convenient for parameter estimation of the resulting model, nonnormal condi-
tional distributions possess the same qualitative features as for volatility clustering
while accounting better for heavy tails. Gallant and Tauchen (1989) report signifi-
cant evidence of both conditional heteroskedasticity and conditional nonnormality
in the daily NYSE value-weighted index. Similarly, Engle and Gonzalez-Rivera
(1991) show that when a GARCH(1,1) model is used for the conditional variance
of stock returns the conditional distribution has considerable kurtosis, especially
for small-firm stocks. Indeed, several authors have proposed GARCH-type models
with nonnormal conditional distributions [Bollerslev et al. (1992)].

Stable distributions [Mandelbrot (1963)] offer an elegant alternative to het-
eroskedasticity for generating fat tails, with the advantage that they have a natural
interpretation in terms of aggregation of a large number of individual contributions
of agents to market fluctuations: Indeed, stable distributions may be obtained as
limit distributions of sums of independent or weakly dependent random variables,
a property that is not shared by alternative models. Unfortunately, the infinite
variance property of these distributions is not observed in empirical data: sample
variances do not increase indefinitely with sample size but appear to stabilize at
a certain value for large enough data sets. We discuss stable distributions in more
detail in Section 4.

A third approach, first advocated by Clark (1973), is to model stock returns by
a subordinated process, typically subordinated Brownian motion. This amounts
to stipulating that through a “stochastic time change” one can transform the
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complicated dynamics of the price process into Brownian motion or some other
simple process. It can be shown that, depending on the choice of the subordinator,
one can obtain a wide range of distributions for the increments, all of which pos-
sess heavy tails, that is, positive excess kurtosis. As a matter of fact, even stable
distributions may be obtained as a subordinated Brownian motion. In the original
approach of Clark (1973), the subordinator was taken to be trading volume. Other
choices that have been proposed are the number of trades [Geman and An´e (1996)]
or other local measures of market activity. However, none of these choices for the
subordinator leads to a normal distribution for the increments of the time-changed
process, indicating that large fluctuations in price may not be completely explained
by large fluctuations in trading volume or number of trades.

In short, although heteroskedasticity and time deformation partly explain the
kurtosis of asset returns, they do not explain it quantitatively: Even after accounting
for these effects, one is left with an important residual kurtosis in the resulting
transformed time series. Moreover, these approaches consider the market as a
“black box” and are not based on any microeconomic representation of the market
phenomenon generating the data that they attempt to describe.

2.2. Heavy Tails as Emergent Phenomena

The failure of purely statistical explanations to account for the presence of heavy
tails in the distribution of asset returns suggests the existence of a more fundamental
market mechanism, common to all speculative markets, that generates such heavy
tails.

Recent works by Bak et al. (1997), Lux (1998), and others have tried to explain
the heavy-tailed nature of return distributions as an emergent property in a market
where fundamentalist traders interact with noise traders. Bak et al. (1997) consider
several types of trading rules and study the resulting statistical properties for the
time series of asset prices in each case. Computer simulations of their model do
seem to yield fat-tailed distributions for asset returns, which at least qualitatively
resemble empirical distributions of stock returns, showing that the appearance of
fat-tailed distributions can be regarded as an emergent property in large markets.
However, the model has two drawbacks: First, it is a fairly complicated model with
many ingredients and parameters and it is difficult to see how each ingredient of the
model affects the results obtained, which in turn diminishes its explanatory power.
Second, the complexity of the model does not allow explicit calculations to be
performed, preventing the model parameters from being compared with empirical
values.

We present here an alternative approach, which, by modeling the communication
structure between market agents as arandom graph, proposes a simple mechanism
accounting for some nontrivial statistical properties of stock price fluctuations.
Although much more rudimentary and containing fewer ingredients than the model
proposed by Bak et al. (1997), our model allows for analytic calculations to be
performed, thus enabling us to interpret in economic terms the role of each of
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the parameters introduced. The basic intuition behind our approach is simple:
Interaction of market participants through imitation can lead to large fluctuations
in aggregate demand, leading to heavy tails in the distribution of returns.

3. HERD BEHAVIOR IN FINANCIAL MARKETS

In the popular literature, “crowd effects” often have been associated with large
fluctuations in market prices of financial assets. Although well known to market
participants, they have been considered only recently in the econometrics litera-
ture. On the theoretical side, a number of recent studies have considered mimetic
behavior as a possible explanation for the excessive volatility observed in financial
markets [Bannerjee (1993), Orl´ean (1995), Shiller (1989), Topol (1991)].

3.1. Empirical Evidence

The existence of herd behavior in speculative markets has been documented by a
certain number of studies: Scharfstein and Stein (1990) discuss evidence of herding
in the behavior of fund managers, Grinblatt et al. (1995) report herding in mutual
fund behavior, and Trueman (1994) and Welch (1996) show evidence for herding
in the forecasts made by financial analysts. See also Golec (1997).

3.2. Theoretical Studies

On the theoretical side, several studies have shown that, in a market with noise
traders, herd behavior is not necessarily “irrational” in the sense that it may be
compatible with optimizing behavior of the agents [Shleifer and Summers (1994)].
Other motivations may be invoked for explaining imitation in markets, such as
“group pressure” [Bikhchandani et al. (1992), Lux (1998), Scharfstein and Stein
(1990)].

Various models of herd behavior have been considered in the literature, the
best-known approach being that of Bannerjee (1992, 1993) and Bikhchandani
et al. (1992). In these models, individuals attempt to infer a parameter from noisy
observations and decisions of other agents, typically through a Bayesian procedure,
giving rise to “information cascades” [Bikhchandani et al. (1992)]. An important
feature of these models is the sequential character of the dynamics: Individuals
make their decisions one at a time, taking into account the decisions of the indi-
viduals preceding them. The model therefore assumes a natural way of ordering
the agents. This assumption seems unrealistic in the case of financial markets: Or-
ders from various market participants enter the market simultaneously and it is the
interplay between different orders that determines aggregate market variables.1

Nonsequential herding has been studied in a Bayesian setting by Orl´ean (1995)
in a framework inspired by the Ising model. Orl´ean considers a model of identical
agents making binary decisions in which any two agents have the same tendency
to imitate each other, and studies the resulting Bayesian equilibria. In terms of
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aggregate variables, this model leads either to a Gaussian distribution when the
imitation is weak or to a bimodal distribution with nonzero modes, which Orl´ean
interprets as corresponding to collective market phenomena such as crashes or pan-
ics. In neither case does one obtain a heavy-tailed unimodal distribution centered
at zero, such as those observed for stock returns.2

The approach proposed in this paper is different from both approaches described
above. Our model is different from those of Bannerjee (1992) and Bikhchandani
et al. (1992) in that herding is not sequential. The unrealistic nature of the results of
Orléan (1995) arises from the fact that all agents are assumed to imitate each other
to the same degree. We avoid this problem by considering the random formation of
groups of agent who imitate each other but such that different groups of agents make
independent decisions, which allows for a heterogeneous market structure. More
specifically, our approach considers the interactions between agents as resulting
from arandomcommunication structure, as explained in the next section.

4. AGGREGATION OF RANDOM INDIVIDUAL DEMANDS

Consider a stock market withN agents, labeled by an integer 1≤ i ≤ N, trading
in a single asset, whose price at timet will be denotedx(t). During each time
period, an agent may choose either to buy the stock, to sell it, or not to trade. The
demand for stock of agenti is represented by a random variableφi , which can take
the values 0,−1, or+1: A positive value ofφi represents a “bull” an agent willing
to buy stock; a negative value represents a “bear,” eager to sell stock; andφi = 0
means that agenti does not trade during a given period. The random character of
individual demands may be due either to heterogeneous preferences or to random
resources of the agents, or both. For example, random utility models studied in
the literature on discrete-choice theory of product differentiation lead to random
individual demands, the distribution of which depends on the distribution specified
for the random utility functions of agents [Anderson et al. (1993)]. Alternatively,
the random nature of individual demand may result from the application by the
agents of simple decision rules, each group of agents using a certain rule. However,
to focus on the effect of herding, we do not explicitly model the decision process
leading to the individual demands; rather, we model the result of the decision
process as a random variableφi . In contrast with many binary choice models in
the microeconomics literature, we allow for an agent to be inactive, that is, not to
trade during a given time periodt . This, as we shall see, is important for deriving
our results.

Let us consider for simplification that, during each time period, an agent may
either trade one unit of the asset or remain inactive. The demand of the agenti is
then represented byφi ∈ {−1, 0,+1}, with φi = −1 representing a sell order. The
aggregate excess demand for the asset at timet is therefore simply

D(t) =
N∑

i=1

φi (t), (2)
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given the algebraic nature ofφi . The marginal distribution of agenti ’s individual
demand is assumed to be symmetric:

P(φi = +1) = P(φi = −1) = a, P(φi = 0) = 1− 2a, (3)

such that the average aggregate excess demand is zero; that is, the market is
considered to fluctuate around equilibrium. A value ofa< 1/2 allows for a finite
fraction of agents not to trade during a given period.

We are concerned here with obtaining a result that could then be compared with
actual market data, and the short-term excess demand is not an easily observable
quantity. Also, most of the studies on the statistical properties of financial time
series have been done on returns, log returns, or price changes. We therefore need
to relate the aggregate excess demand in a given period to the return or price change
during that period. The aggregate excess demand has an impact on the price of the
stock, causing it to rise if the excess demand is positive and to fall if it is negative.
A common specification, which is compatible with standardtatonnementideas, is
to assume a proportionality between price change (or return) and excess demand:

1x = x(t + 1)− x(t) = 1

λ

N∑
i=1

φi (t), (4)

whereλ is themarket depth: It is the excess demand needed to move the price
by one unit; it measure the sensitivity of price to fluctuations in excess demand.
Equation (4) emphasizes the price impact of the order flow as opposed to other
possible causes for price fluctuations. Although in the long run, economic factors
other than short-term excess demand may influence the evolution of the asset price,
resulting in mean reversion or more complex types of behavior, we focus here on
the short-run behavior of prices, for example, on intraday timescales in the case of
stock markets, and so, this approximation seems reasonable.

The linear nature of this relation also may be questioned. Results reported by
Farmer (1998) and others, based on the study of the price impact of blocks of orders
of different sizes sent to the market, seem to indicate a linear relationship for small
price changes with nonlinearity arising when the size of blocks is increased [see
also Kempf and Korn (1997)]. Nevertheless, if the one-period return1x is a
nonlinear but smooth functionh(D) of the excess demand, then a linearization of
the inverse demand functionh (a first-order Taylor-series expansion inD) shows
that equation (4) may still hold for small fluctuations of the aggregate excess
demand withh′(0)= 1/λ.

To evaluate the distribution of stock returns from equation (4), we need to know
the joint distribution of the individual demands [φi (t)]1≤i≤N . Let us begin by
considering the simplest case in which individual demandsφi of different agents
are independent and identically distributed random variables. We refer to this
hypothesis as the “independent agents” hypothesis. In this case the joint distribution
of the individual demands is simply the product of individual distributions, and
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the price variation1x is a sum ofN i.i.d.r.v.’s with finite variance. When the
number of terms in equation (4) is large, the central limit theorem applied to the
sum in equation (4) tells us that the distribution of1x is well approximated by a
Gaussian distribution. Of course, this result still holds as long as the distribution
of individual demands has finite variance.

This can be seen as a rationale for the frequent use of the normal distribution
as a model for the distribution of stock returns. Indeed, if the variation of market
price is seen as the sum of a large number of independent or weakly dependent
random effects, then it is plausible that a Gaussian description will be a good one.

Unfortunately, empirical evidence tells us otherwise: The distributions both of
asset returns [Pagan (1996), Campbell et al. (1997)] and of asset price changes
[Mandelbrot (1963, 1997), Cont (1997), Cont et al. (1997)] have been shown
repeatedly to deviate significantly from the Gaussian distribution, exhibiting fat
tails and excess kurtosis.

However, the independent-agent model is also capable of generating aggregate
distributions with heavy tails. Indeed, if one relaxes the assumption that the individ-
ual demandsφi have a finite variance, then under the hypothesis of independence
(or weak dependence) of individual demands, the aggregate demand—and there-
fore the price change if we assume equation (4)—will have a stable (Pareto–L´evy)
distribution. This is a possible interpretation for the stable-Pareto model proposed
by Mandelbrot (1963) for the heavy tails observed in the distribution of the in-
crements of various market prices. The infinite variance ofφi then reflects the
heterogeneity of the market, for example, in terms of broad distribution of wealth
of the participants as proposed by Levy and Solomon (1997).

Mandelbrot’s stable-Paretian hypothesis has been criticized for several reasons,
one of them being that it predicts an infinite variance for stock returns, which
implies in practice that the sample variance will increase indefinitely with sample
size, a property that is not observed in empirical data.

More precisely, a careful study of the tails of the distribution—both conditional
and unconditional—of increments for various financial assets shows that they have
heavy tails with a finite variance [Pagan (1996), Cont et al. (1997), Bounchaud
and Potters (1997)]. Many distributions verify these conditions, and various para-
metric families of distributions have been proposed and tested against market data
[Campbell et al. (1997)]. A particular one proposed by the authors and others
[Cont et al. (1997)] is the family of exponentially truncated stable distributions,
a parametric family of infinitely divisible distributions with finite variance, which
include stable L´evy distributions as a limiting case. For such models, the tails of
the density have the asymptotic form of an exponentially truncated power law:

p(1x) ∼
|1x|→∞

C

|1x|1+µ exp

(
− 1x

1x0

)
(5)

The estimated exponent,µ,3 is found to be close to 1.5 (µ ' 1.4–1.6) for a
wide variety of stocks and market indexes [Bouchaud and Potters (1997)]. This
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asymptotic form allows for heavy tails (excess kurtosis) without implying infinite
variance.

However, it is known that the central limit theorem also holds for certain
sequences of dependent variables: Under various types ofmixing conditions
[Billingsley (1975)], which are mathematical formulations of the notion of “weak”
dependence, aggregate variables will still be normally distributed. Therefore, the
non-Gaussian and more generally nonstable character of empirical distributions,
be it excess demand or the stock returns, not only demonstrates the failure of the
‘independent-agent’ approach, but also shows that such an approach is nowhere
close to being a good approximation. The dependence between individual de-
mands is an essential character of the market structure and may not be left out
in the aggregation procedure; they cannot be assumed to be weak [in the sense
of a mixing condition; Billingsley (1975)] anddo change the distribution of the
resulting aggregate variable.

Indeed, the assumption that the outcomes of decisions of individual agents may
be represented as independent random variables is highly unrealistic. Such an
assumption ignores an essential ingredient of market organization, namely, the
interactionandcommunicationamong agents.

In real markets, agents may form groups of various sizes, which then may share
information and act in coordination. In the context of a financial market, groups
of traders may align their decisions and act in unison to buy or sell; a different
interpretation of a group may be an investment fund corresponding to the wealth
of several investors but managed by a single fund manager.

To capture such effects, we need to introduce an additional ingredient, namely,
the communication structure between agents. One solution would be to specify
a fixed trading-group structure and then proceed to study the resulting aggregate
fluctuations. Such an approach has two major drawbacks. First, a realistic market
structure may require specifying a complicated structure of clusters and rendering
the resulting model analytically intractable. More important, the resulting pattern
of aggregate fluctuations will crucially depend on the specification of the market
structure.

An alternative approach, suggested by Kirman (1983 and 1996), is to consider
the market communication structure itself as stochastic. One way of generating a
random market structure is to assume that market participants meet randomly and
trades take place when an agent willing to buy meets an agent willing to sell. This
procedure, called “random matching” by some authors [Ioannides (1990)], has
been considered previously in the context of the formation of trading groups by
Ioannides (1990) and in the context of a stock market model by Bak et al. (1997).

Another way is to consider that market participants form groups or “clusters”
through a random matching process, but that no trading takes places inside a given
group. Instead, members of a given group adopt a common market strategy (e.g.,
they decide to buy or sell or not to trade) and different groups may trade with each
other through a centralized market process. The trading takes place among the
groups, not among group members. In the context of a financial market, clusters
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may represent, for example, a group of investors participating in a mutual fund.
This is the line that we follow in this paper.

5. PRESENTATION OF THE MODEL

More precisely, let us suppose that agents group together in coalitions orclusters
and that, once a coalition has formed, all of its members coordinate their individual
demands so that all individuals in a given cluster have the same belief regarding
future movements of the asset price. Using the framework described in the preced-
ing section, we consider that all agents belonging to a given cluster will have the
same demandφi for the stock. In the context of a stock market, these clusters may
correspond, for example, to mutual funds (e.g., portfolios managed by the same
fund manager) or to herding among security analysts as in Trueman (1994) and
Welch (1996). The right-hand side of equation (3) therefore can be rewritten as a
sum over clusters:

1x = 1

λ

k∑
α=1

Wαφα(t) = 1

λ

nc∑
α=1

Xα, (6)

whereWα is the size of clusterα, φα(t), is the (common) individual demand of
agents belonging to the clusterα, nc is the number of clusters (coalitions), and
Xα =φαWα.

One may consider that coalitions are formed through binary links between
agents, a link between two agents meaning that they undertake the same action
on the market, that is, they both buy or sell stock. For any pair of agentsi and
j , let pi j be the probability thati and j are linked together. Again, to simplify,
we assume thatpi j = p is independent ofi and j : all links are equally probable.
Then(N − 1)p denotes the average number of agents a given agent is linked to.
Because we are interested in studying theN→∞ limit, p should be chosen in
such a way that(N − 1)p has a finite limit. A natural choice ispi j = c/N, any
other choice verifying the above condition being asymptotically equivalent to this
one. The distribution of coalition sizes in the market thus is specified completely
by a single parameter,c, which represents the willingness of agents to align their
actions. It can be interpreted as a coordination number, measuring the degree of
clustering among agents.

Such a structure is known as arandom graphin the mathematical literature Erd¨os
and Renyi (1960), Bollobas (1985). In terms of random-graph theory, we consider
agents as vertices of a random graph of sizeN, and the coalitions as connected
components of the graph. Such an approach to communication in markets using
random graphs was first suggested in the economics literature by Kirman (1983)
to study the properties of the core of a large economy. Random graphs also have
been used in the context of multilateral matching in search equilibrium models by
Ioannides (1990). A good review of the applications of random-graph theory in
economic modeling is given by Ioannides (1996).
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The properties of large random graphs in theN→∞ limit were first studied by
Erdös and Renyi (1960). An extensive review of mathematical results on random
graphs is given by Bollobas (1985). The main resullts of the combinatorial approach
are given in Appendix A. One can show [Bollobas (1985)] that forc= 1 the
probability density for the cluster size distribution decreases asymptotically as a
power law:

P(W) ∼
W→∞

A

W5/2
,

whereas for values ofc close to and smaller than 1 (0< 1− c¿ 1), the cluster
size distribution is cut off by an exponential tail:

P(W) ∼
W→∞

A

W5/2
exp

[
(1− c)W

W0

]
. (7)

Forc = 1, the distribution has an infinite variance, whereas forc < 1 the variance
becomes finite because of the exponential tail. In this case the average size of a
coalition is of order 1/(1− c) and the average number of clusters is then of order
N(1− c/2).

Setting the coordination parameterc close to 1 means that each agent tends
to establish a link with one other agent, which can be regarded as a reasonable
assumption. This does not rule out the formation of large coalitions through succes-
sive binary links between agents but prevents a single agent from forming multiple
links, as would be the case in a centralized communication structure in which one
agent (the “auctioneer”) is linked to all of the others. As argued by Kirman (1983),
the presence of a Walrasian auctioneer corresponds to such “star-like,” centralized
communication structures. We are thus excluding such a situation by construc-
tion: We are interested in a market in which information is distributed and not
centralized, which corresponds more closely to the situations encountered in real
markets. More precisely, the local structure of the market may be characterized
by the following result [Bollobas (1985)]: In the limitN →∞, the numberνi of
neighbors of a given agenti is a Poisson random variable with parameterc:

P(νi = ν) = e−c cν

ν!
. (8)

A Walrasian auctioneerw would be connected to every other agent:νw = N − 1.
The probability for having a Walrasian auctioneer therefore is given byN P(νw =
N − 1), which goes to zero whenN →∞.

There are two different ways to represent a market as a collection of agents
clustered into small groups. The first is to consider the groups as “trading groups,”
that is, groups of market agents trading among themselves, with little or no trade
among different trading groups. Each trading group acts as a minimarket with
its own price, supply, and demand. This approach, which is the one adopted by
Ioannides (1990), can be used to model price, dispersion for example. When ap-
plied to a financial market, the connected components of the random graph then
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represent groups of traders who buy and sell between themselves but have very
few transactions with other groups of traders.

As pointed out earlier, our approach is different: Here, the trading takes place
not among members of a given group but between different clusters. A given
market cluster is characterized by its sizeWα and its “nature,” that is, whether the
members are buyers or sellers. This is specified by a variableφα ∈ {−1, 0, 1}. It
is reasonable to assume thatWα andφα are independent random variables: The
size of a group does not influence its decision whether to buy or sell. The variable
Xα = φαWα then is distributed symmetrically with a mass of 1− 2a at the origin.
Let

F(u) = P(Xα ≤ u|Xα 6= 0). (9)

Then, the distribution ofXα is given by

G(u) = P(Xα ≤ u) = (1− 2a)H(u)+ 2aF(u), (10)

whereH is a unit step function at 0 (Heaviside function). We shall assume thatF
has a continuous density,f , which decays asymptotically as in (7):

f (u) ∼
|u|→∞

A

|u|5/2 e
−(c−1)|u|

W0 . (11)

The expression for the price variation1x therefore reduces to a sum ofnc i.i.d.r.v.’s
Xα, α = 1 . . .nc with heavy-tailed distributions as in (7):

1x = 1

λ

nc∑
α=1

Xα.

Since the probability density ofXα has a finite mass 1−2a at zero, only a fraction
2a of the terms in the sum (6) are nonzero; the number of nonzero terms in the sum
is of order 2anc ∼ 2aN(1− c/2) = norder(1− c/2), wherenorder= 2aN is the
average number of market participants who actively trade in the market during a
given period. For example,nordercan be thought of as the number of orders received
during the time period [t, t + 1] if we assume that different orders correspond to
net demands, as defined earlier, of different clusters of agents. For a time period
of, say, 15 min on a liquid market such as NYSE,norder= 100 is a typical order
of magnitude.

The distribution of the price variation1x is then given by

P(1x = u) =
N∑

k=1

P(nc = k)
k∑

j=0

(
k
j

)
(2a) j (1− 2a)k− j f ⊗ j (λu), (12)

where⊗ denotes a convolution product,nc being the number of clusters. Equa-
tion (12) enables us to calculate the moment-generating functionsF of the
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aggregate excess demandD in terms of f̃ (see Appendix C for details):

F(z) ∼
N→∞

exp

{
norder

(
1− c

2

)
[ f̃ (z)− 1]

}
. (13)

The moments ofD (and those of1x) may now be obtained through a Taylor-series
expansion of equation (13) (see Appendix D for details). The calculation of the
variance and the fourth moment yields

µ2(D) = norder

(
1− c

2

)
µ2(Xα), (14)

µ4(D) = norder

(
1− c

2

)
µ4(Xα)+ 3N2

order

(
1− c

2

)2

µ2(Xα)
2. (15)

An interesting quantity is the kurtosis of the asset returns, which, in our model, is
equal to the kurtosis of excess demandκ(D):

κ(D) = µ4(Xα)

norder
(
1− c

2

)
µ2(Xα)

. (16)

The momentsµ j (Xα) may be obtained by an expansion in 1/N, whereN is the
number of agents in the market (see Appendix B). Substituting their expression on
the above formula yields the kurtosisκ(D) as a function ofc and the order flow:

κ(D) = 2c+ 1

norder(1− c/2)A(c)(1− c)3
, (17)

where A(c) is a normalization constant with a value close to 1, defined in
Appendix B, tending to a finite limit asc→ 1. This relation can be interpreted
as follows: A reduction in the volume of the order flow results in larger price fluc-
tuations, characterized by a larger excess kurtosis. This result corresponds to the
well-known fact that large price fluctuations are more likely to occur in less active
markets, characterized by a smaller order flow. It is also consistent with results
from various market microstructure models, where a larger order flow enables eas-
ier regulation of supply and demand by the market maker. It is interesting that we
find the same qualitative feature here although we have not explicitly integrated
a market maker in our model. This result should be compared to the observation
by Engle et al. (1991) that, even after accounting for heteroskedasticity, the con-
ditional distribution of stock returns for small firms is higher than that of large
firms. Small-firm stocks are characterized by a smaller order flownorders, and so,
this observation is compatible with our results.

More important, equation (17) shows that the kurtosis can be very largeeven if
the number of orders is itself large, providedc is close to 1. SinceA(1) is close
to 1/2, one finds that even forc= 0.9 andnorder= 1,000, the kurtosisκ is still of
order 10, as observed on very active markets on time intervals of tens of minutes.
Actually, one can show that, provided 2aN is not too large, the asymptotic behavior
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of P(1x) is still of the form given by equation (7). This model thus leads naturally
to the value ofµ = 3/2, close to the value observed on real markets. Of course,
the value ofc could itself be time dependent. For example, herding tends to be
stronger during periods of uncertainty, leading to an increase in the kurtosis. When
c reaches 1, a finite fraction of the market simultaneously shares the same opinion
and this leads to a crash. An interesting extension of the model would be one in
which the time evolution of the market structure is explicitly modeled, and the
possible feedback effect of the price moves on the behavior of market participants.

6. SUMMARY AND RESULTS

We have presented a model of a speculative market withN agents who face three
alternatives at each time period: to buy a unit of a financial asset, to sell a unit
of the asset, or not to trade. We assume that the agents organize into groups
by forming independent binary links between each other with probabilityc/N,
where 1< c< 1 is a connectivity parameter. The resulting market structure is then
described by a random graph withN vertices whose connected components or
clusterscorrespond to groups of investors who pool their capital into a single fund
or act in unison to buy or sell. Each cluster of agents now decides, independently
from other clusters, whether to buy, to sell, or not to trade. To model this, we
attribute to each cluster4 α a random variableφα taking values in{−1, 0,+1},
with φα independent fromφβ if α 6=β. All agents belonging to the cluster are
assumed to make the same decision: buy ifφα =+1, sell ifφα =−1, and not trade
if φα = 0. The variablesφα, where the indexα denotes clusters, are independent
variables with a symmetric distribution:

P(φα = +1) = P(φα = −1) = a, P(φα = 0) = 1− 2a. (18)

As explained earlier,norder = 2aN represents the average order flow (number
of orders per unit time arriving on the market), which should remain finite in the
N →∞ limit, meaning that only a finite number of agents are allowed to trade at
the same time. This leads us to parameterizea as

a = norder

2N
+ o

(
1

N

)
. (19)

Denotingφi (t)∈ {−1, 0,+1} as the demand of agenti , the above statements imply
that

φi andφ j are independent random variables ifi and j do not belong to the same cluster;
φi = φ j otherwise.

The variablesφi , i ∈ [1, N] together with the graph structure defined by the links
defines the configuration of the market. LetM be such a configuration,L(M)

be the number of links inM, C−(M) be the number of clustersα with φα =−1
(clusters of sellers),C+(M) be the number of clustersα with φα =+1 (clusters of
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buyers), andC0(M) be the number of clustersα with φα = 0 (nontrading clusters).
Then, according to our specifications, such a market configuration is observed with
probability

P(M) =
(

c

N

)L(M)(
1− c

N

)(N
2)−L(M)(

1− norder

N

)C0(M)(norder

N

)C+(M)+C−(M)

.

The excess demandD(t)= ∑φi (t) then gives rise to a change1x(t) in the
market price, which is assumed to be linearly related toz(t) [equation (4)]. We are
interested in the distribution of1x(t) or, equivalently, ofD(t) (more precisely,
its tail behavior) in the above model, when the numberN of investors is large. To
study this limit, we assume thatc< 1 and that the order flownordersremains finite
whenN→∞. Under these assumptions (see Appendix C),

(1) The density of price changes1x displays a heavy, non-Gaussian tail of the form

p(u) ∼
|u|→∞

e
u

u0

u5/2
. (20)

(2) The heaviness of the tails, as measured by the kurtosis of the price change, is inversely
proportional to the order flow:

κ(1x) = 2c+ 1

norder

(
1− c

2

)
A(c)(1− c)3

. (21)

This means that an illiquid market—that is, with a weak order flow—will produce
large price fluctuations with higher frequency than a market in which there are
more orders flowing in per unit time.

The quantities above are defined for a certain time interval1t , taken to be
unity in the relations above. Changing the time interval would modify, among all
of the parameters defining the model, only the order flownorders, which should
be an increasing function of the time interval1t . Equation (13) then implies
that, as the time interval1t increases, the price changes over1t become more
and more Gaussian, which is indeed consistent with empirical observations [Cont
et al. (1997)]. Our model thus enables a crossover between heavy tails at small
timescales and Gaussian behavior of price increments at large timescales, the
crossover being caused by the increase of number of orders during1t when1t
is increased. More precisely, this remark together with equation (21) implies a
link between the scaling behavior of the kurtosis of price increments on timescale
1t and the manner in which the order flow during1t should increase with1t .
Recent empirical studies [Cont (1997)] have suggested that the kurtosis of price
increments on timescale1t exhibits a nonlinear (anomalous) scaling behavior,

κ ∼ |1t |−α, (22)

withα' 0.4. As shown by Cont (1997), this observation is consistent with a power-
law decay in the correlation function of squared price changes, a well-documented
property of stock returns. In view of equation (21), this would imply that the order
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flow during1t should increase as|1t |α, a prediction that can be tested empirically.
Note that a somewhat similar scaling relation for the trading volume as a function
of1t was proposed by Clark (1973), but our assertion is of a different nature since
Clark’s relation concerned trading volume and not order flow.

7. DISCUSSION

We have exhibited a model of a stock market that, albeit its simplicity, gives
rise to a probability distribution with heavy tails and finite variance for aggregate
excess demand and stock price variations, similar to empirical distributions of asset
returns. Our model illustrates the fact that whereas a naive market model in which
agents do not interact with each other would tend to give rise to normally distributed
aggregate fluctuations, taking into account interaction between market participants
through a rudimentary herding mechanism gives a result that is quantitatively
comparable to empirical findings on the distribution of stock market returns.

7.1. Link Between Herd Behavior and Price Intermittency

One of the interesting results of our model is that it predicts a relation between
the fatness of the tails of asset returns as measured by their excess kurtosis and
the degree of herding among market participants as measured by the parameterc.
This relation is given by equation (17) .

Although we implicitly assumed thatt represents chronological time, we could
formulate the model by consideringt as market time, leading to a subordinated
process in real time as in Clark (1973), with the difference that the underlying
process will not be a Gaussian random walk.

7.2. Levels of Randomness

As explained earlier, the structure of the market is described in our model as a
random graph. On this random market structure is superimposed another source
of randomness, that of the demands of agents of each group. Note that these two
sources of randomness are not of the same nature. First, whereas a given herd
may rapidly switch from buying to selling on a very short timescale, the structure
of herds (i.e. the market structure) is likely to evolve much more slowly in time.
Therefore, there is a separation between slow variables (the herd sizesWi ) and fast
variables (φi ). if we are interested in dynamics on short timescales, of the order
of an hour in a liquid market, we can consider the market structure as essentially
static; this is not true, however, in the long run.

7.3. Robustness with Respect to Market Topology

When defining interactions between market participants, one needs a notion of
distance between different agents. Contrary to the case of physical systems, such
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a notion is not readily available in socioeconomic systems, and the results of a
given model may depend heavily on how neighborhood relations are defined. In
the above model, we allow agents to choose their “neighbors” randomly, which
amounts to using a random graph topology for the market communication structure
[Kirman (1983)]. One might wonder how sensitive the results of the model are to
this specification. Stauffer and Penna (1998) have simulated variants of our model
in which the agents are placed on ad-dimensional lattice and form random links
only with their nearest neighbors as defined by the lattice topology. Interestingly,
their extensive Monte-Carlo simulations for various lattice sizes and dimensions
(d= 2 to 7) show that the results of Section 6 remain true and therefore do not
crucially depend on the graph structure specified above, which is not obvious a
priori.

7.4. Extensions

Our model raises several interesting questions. As remarked earlier, the value ofc
is specified as being less than, and close to 1. Fine-tuning a parameter to a certain
value may seem arbitrary unless one can justify such an assumption. An interesting
extension of the model would be one in which the time evolution of the market
structure is explicitly modeled in such a way that the parameterc remains in the
critical region (close to 1). Note, however, that our results are not restricted to a
single value ofc but to a whole range of values< 1.

One approach to this problem is via the concept of “self-organized criticality,”
introduced by Bak et al. (1987): Certain dynamical systems generically evolve to
a state where the parameters converge to the critical values, leading to scaling laws
and heavy-tailed distributions for the quantities modeled. This state is reached
asymptotically and is an attractor for the dynamics of the system. Bak et al. (1993)
present a simple model of an economic system presenting self-organized criticality
(see also Lux and Marchesi (1999)).

Note, however, that for the above results to hold, one does not need to adjust
c to a critical value: It is sufficient forc to be within a certain range of values.
As noted earlier, whenc approaches 1 the clusters become larger and larger and a
giant coalition appears whenc ≥ 1. In our model the activation of such a cluster
would correspond to a market crash (or boom). To be realistic, the dynamics
of c should be such that the crash (or boom) isnot a stable state and the giant
cluster disaggregates shortly after it is formed: After a short period of panic, the
market resumes normal activity. In mathematical terms, one should specify the
dynamics ofc(t) such that the valuec = 1 is “repulsive.” This can be achieved by
introducing a feedback effect of prices on the behavior of market participants: A
nonlinear coupling between can lead to a control mechanism maintainingc in the
critical region.

Yet another interesting dynamical specification compatible with our model
is obtained by considering agents with “threshold response.” Threshold models
have been considered previously as possible origins for collective phenomena in
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economic systems [Granovetter (1983)]. One can introduce heterogeneity by al-
lowing the individual thresholdθi to be random variables: For example, one may
assume theθi ’s to be i.i.d. with a standard deviationσ(θ). A simple way to in-
troduce interactions among agents is through an aggregate variable: Each agent
observes the aggregate excess demandD(t) given by equation (2) or eventually
D(t)+E(t), whereE is an exogeneous variable. Agents then evolve as follows: At
each time step, an agent changes its market positionφ(t) (“flips” from long to short
or vice versa) if the observed signalD(t) crosses his or her thresholdθi . Aggregate
fluctuations then can occur through cascades or “avalanches” corresponding to the
flipping of market positions of groups of agents. This model has been studied in
the context of physical systems by Sethna et al. (1997), who have shown that, for
a fairly wide range of values ofσ(θ), one observes aggregate fluctuations whose
distribution has power-law behavior with exponential tails, as in equation (7).

These issues will be adressed in a forthcoming work.

NOTES

1. Bikhchandani et al. (1992) do not consider their model applicable to financial markets, but for
another reason: They remark that as the herd grows, the cost of joining it will also grow, discourag-
ing new agents from joining. This aspect, which is not taken into account by their model, is again
unavoidable in the sequential character of herd formation.

2. Note, however, that one could also obtain heavy tails in Orl´ean’s approach by placing the system
at the critical temperature of the corresponding Ising model.

3. Because of the presence of the exponential, this exponent isnot the same as the Hill estimator
or the one found by fitting a power law to the tails of return distributions. Moreover, it is easy to see
that several functional forms can have the same behavior in some ranges of values; we do not claim
that the functional form (5) has any canonical feature to it but that it fits the empirical data well.

4. Greek subscripts denote clusters and Roman subscripts denote the agents.
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APPENDICES

Unless specified otherwise,f (N, c)∼ g(N, c) means

f (N, c)

g(N, c)
= 1+ o

N→∞
(1)

uniformly in c on all compact subsets of ]0,1[.

APPENDIX A: SOME RESULTS FROM
RANDOM GRAPH THEORY

In this appendix, we review some results on asymptotic properties of large random graphs.
Proofs for most of the results can be found in Erd¨os and Renyi (1960) or Bollobas (1985).

ConsiderN labeled pointsV1,V2, . . .VN , calledvertices. A link (or edge) is defined as
an unordered pair{i , j }. A graph is defined by a setV of vertices and a setE of edges. Any
two vertices may either be linked by one edge or not be linked at all. In the language of
graph theory, we consider non-oriented graphs without parallel edges. We always denote
the number of vertices byN. A path is defined as a finite sequence of links such that every
two consecutive edges and only these have a common vertex. Vertices along a path can be
labeled in two ways, thus enabling us to define the extremities of the path. A graph is said
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to be connected if any two verticesVi ,Vj are linked by a path; that is, there exists a path
with Vi andVj as extremities. Acycle(or loop) is defined as a path such that the extremities
coincide. A graph is called atree if it is connected and if none of its subgraphs is a cycle.
A graph is called acyclic if all of its subgraphs are trees.

Consider now a graph built by choosing, for each pair of verticesVi ,Vj , whether to link
them or not through a random process, the probability for selecting any given edge being
p> 0, the decisions for different edges being independent. A graph obtained by such a
procedure is termed arandom graphof typeG(N, p) in the notations of Bollobas (1985).
This definition corresponds to random graphs of type0∗∗n,N in Erdös and Ranyi (1960, p. 20).

In the following, we are specifically interested in the casep= c/N. Various graph-
theoretical parameters of such graphs are random variables whose distributions only depends
on N andc. We are particularly interested in the properties of large random graphs of this
type, that is,G(N, c/N) in the limit N →∞.

The following results have been shown by Erd¨os and Renyi (1960) and Bollobas (1985):
If c< 1, then in the limitN→∞ all points of the random graphs belong to trees except
for a finite numberU of vertices, which belong to unicyclic components. Moreover, the
probability of a vertex belonging to a cyclic component tends to zero asN−1/3. For describing
the structure of large random graphs forc< 1, it is therefore sufficient to account for vertices
belonging to trees; cyclic components do not essentially modify the results, except when
c= 1.

More precisely [Bollobas (1985, Theorem V.22)],

U ∼ 1

2

∞∑
k=3

(ce−c)k
k−3∑
j=0

k j

j !
,

σ 2(U ) ∼ 1

2

∞∑
k=3

k(ce−c)k
k−3∑
j=0

k j

j !
.

The preceding expressions are valid forc 6= 1.

APPENDIX B: DISTRIBUTION OF CLUSTER
SIZES IN A LARGE RANDOM GRAPH

Let p1(s) be the probability for a given vertex to belong to a cluster of sizes in theN →∞
limit. The moment-generating function81 of the p1 is defined by

81(z) =
∞∑

s=1

eszp1(s).

We now proceed to derive a functional equation verified by81 in the largeN limit when
the effects of loops (cycles) are neglected.
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Let p1
N(s) be the corresponding probability in a random graph withN vertices. Adding

a new vertex to the graph will modify the pattern of links, the probability ofk new links
from the new vertex to the old ones being(

c

N

)k(
1− c

N

)N−k(
N

k

)
.

As shown in Appendix A, the probability of creating a cycle tends to zero for largeN. The
constraint that no new cycles be created by the new links imposes the condition that the
k links are made to vertices ink different clusters of sizes. Ifs1, s2, . . . sk are the sizes of
these clusters, then the new links will create a new cluster of sizes1 + s2 + · · · + sk + 1:

p1
N+1(s) =

N∑
k=1

N∑
s1,...,sk=1

(
N

k

)(
c

N

)k(
1− c

N

)N−k

× δ(s1 + s2 + · · · + sk + 1− s)p1
N(s1)p

1
N(s2) . . . p1

N(sk).

Multiplying both sides byesz and summing overs gives

81(z, N + 1) = ez

[
1+ c

N
+81(z, N)

c

N

]N

,

which gives, in the largeN limit,

81(z) = ez+c(81(z)−1),

from which various moments and cumulants may be calculated recursively. The distribution
of cluster sizesp(s) is then given by

p(s) = A(c)
p1(s)

s
,

whereA(c) is a normalizing constant defined such that
∫

p(s) ds= 1.

APPENDIX C: NUMBER OF CLUSTERS
IN A LARGE RANDOM GRAPH

Let nc(N) be the number of clusters (connected components) in a random graph of size
N defined as above;nc is a random variable whose characteristics depend onN and the
parameterc. In this section, we show thatnc has an asymptotic normal distribution when
N →∞ and that for largeN, the j th cumulantCj of nc is given by

Cj ∼
N→∞

(−1) j Nc

2
.
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From a well-known generalization of Euler’s theorem in graph theory,

l (N)− N + nc(N) = χ(N),

whereχ(N) is the number of independent cycles andl (N) is the number of links. This
implies in turn that

nc(N) = N

(
1− c

2

)
+ O(1)

We retrieve this result later and proceed to calculate higher moments via an approximation.
Define the moment-generating function for the variablenc(N) to be

8N(z, c) = encz =
N∑

k=1

PN,c(nc = k)ekz.

The j th moment ofnc is then given by

nc
j = ∂ jφN

∂zj
(0, c).

Let us also consider the cumulant generating function9 defined by8(z) = exp9(z). The
j th cumulantof the distribution ofnc then can be calculated as

Cj (N, c) = ∂ j9N

∂zj
(0, c).

We now establish an approximate recursion relation between8N and8N+1. Take a random
graph of sizeN, the probability of a link between any two vertices beingp = c/N. To obtain
a graph withN+ 1 vertices, add a new vertex and choose randomly the links between the new
vertex and the others. Note that since in a graph of sizeN the link probability ispN = c/N,
our new graph will correspond to a graph of sizeN+1 with parameterc′ = c(N+1)/N so
that the link probability isc′/(N + 1)= c/N. We assume that the probability of two links
being made to the same cluster is negligible, that is, that no cycles are created by the new
links, which is a reasonable approximation given the results in Appendix A. In this case,
eachk links emanating from the new vertex will diminish the number of clusters byk− 1,
giving the following recursion relation:

PN+1,c′(n) =
(

1− c

N

)N

PN+1,c′(n+ 1)

+
N∑

k=1

(
N

k

)(
c

N

)k(
1− c

N

)N−k

PN+1,c′(n+ k− 1).

Multiplying each side byenz and summing overn = 1 . . . N gives

8N+1(z, c
′) = ez8N(z, c)

[
1+ c

N
(e−z − 1)

]N
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or, in terms of the cumulant-generating function9N ,

9N+1

[
z, c

(
1+ 1

N

)]
= z+9N(z, c)+ ln

[
1+ c

N
(e−z − 1)

]N

. (C.1)

WhenN →∞, a first-order expansion in 1/N gives

8N+1(z, c)+ c

N
∂28N+1(z, c)

= ez8N(z, c) exp

{
c(e−z − 1)

[
1− c2(e−z − 1)2

N

]}
+ o

(
1

N

)
, (C.2)

where∂2 denotes a partial derivative with respect to the second variable. The second term
on the left-hand side stems from the expansion in the variablec′ = c(1+1/N) and reflects
the fact that the probability for a link has to be renormalized when going from anN-graph
to a (N+ 1)-graph.

By taking successive partial derivatives of (C.1) and (C.2) with respect toz, one then can
derive the recursion relation for the moments and cumulants ofnc. Let us first retrieve the
result given in Appendix A fornc. Defineγ (c) such that

nc = ∂φN

∂z
(0, c) = γ1(c)N + O(1).

Substituting in (C.1) yields a simple differential equation forγ1:

γ1(c)+ cγ1
′(c) = 1− c,

whose solution isγ1(c) = (1− c/2), that is,

nc =
(

1− c

2

)
N + O(1),

nc

N
→ 1− c

2
.

Let us now derive a similar relation for the varianceσ 2(N, c) = var(nc). Let

σ 2(N, c) = γ2(c)N + O(1).

By taking derivatives twice with respect toz in (C.1) and settingz = 0, we obtain, up to
first order in 1/N,

γ2(c)+ cγ2
′(c) = c,

whenceγ2(c) = c/2. By calculating thej th derivative in (C.1) with respect toz, we can
derive in the same way an asymptotic expression for thej th cumulant ofnc:

Cj ∼
N→∞

(−1) j Nc

2
.

Note that the asymptotic forms for cumulants ofnc are identical to those of a random
variableZ with the following distribution:

P(Z = k) =

(
Nc

2

)N−k

(N − k)!
e−

Nc
2 ;
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that is,N−Z is a Poisson variable with parameterNc/2. Without rescaling, this distribution
becomes degenerate in the largeN limit. Nevertheless, for finiteN, both8N and9N are
analytic functions ofz in a neighborhood of zero. Consider now the rescaled variable:

YN =
nc − N

(
1− c

2

)
√

Nc/2
.

YN has zero mean and unit variance and its higher cumulants tend to zero:

∀ j ≥ 3, Cj (YN) →
N→∞

0.

The standard normal distribution is the only distribution with zero mean, unit variance,
and zero higher cumulants. Under these conditions, we can show [Feller (1950)] that the
convergence of the cumulants implies convergence in distribution:

nc − N
(
1− c

2

)
√

Nc/2
∼

N→∞
N (0, 1).

APPENDIX D: DISTRIBUTION OF
AGGREGATE EXCESS DEMAND

In this appendix, we derive an equation for the generating function of the variable1x,
which represents in our model the one-period return of the asset. The relation between1x
and other variables of the model is given by equation (6):

1x = 1

λ

nc∑
α=1

Wαφα = 1

λ

nc∑
α=1

Xα,

wherenc is the number of clusters or trading group, that is, the number of connected
components of the random graph in the context of our model. The number of clustersnc is
itself a random variable, whose cumulants are known in theN →∞ limit (see Appendix C).
As for the random variablesXα, their distribution is given by equation (10):

P(1x = x) =
N∑

k=1

P(nc = k)
k∑

j=0

(
k
j

)
(2a) j (1− 2a)k− j f ⊗ j (λx).

To calculate this sum, let us introduce the moment-generating functions for1x andX′α:

f̃ (z) =
∑

s

f (s)esz, F(z) =
∑

s

P(λ1x = s)esz.
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Multiplying the right-hand side of the preceding equation byeλxz and summing overs= λx
yields

F(z) =
N∑

k=1

P(nc = k)[1− 2a+ 2a f̃ (z)]k

= 8(ln{1+ 2a[ f̃ (z)− 1]})
= exp[9(ln{1+ 2a[ f̃ (z)− 1]})

where9(z) is the cumulant generating function of the number of clusters defined in
Appendix C, and9 is an analytic function whose series expansion is given by the cu-
mulants ofnc:

9(z) = Nz+ Nc

2

∞∑
k=1

(−z) j

j !
= Nz+ Nc

2
(e−z − 1).

We can evaluate the preceding sum in the largeN limit as

F(z) = exp[9(ln{1+ 2a[ f̃ (z)− 1]})]

= γ N exp

[
Nc

2

(
1

γ
− 1

)]
,

where

γ = {1+ 2a[ f̃ (z)− 1]}.
Recall that 2a corresponds to the fraction of agents who are active in the market in a given
period. Therefore, 2aN is the average number of buy and sell orders sent to the market in
one period. We choosea(N) such that in the limitN → ∞ the number of orders has a
finite limit, which we denote bynorders: 2aN → norders. More precisely, if we assume that
(see Section 6) 2a = norders/N + o(1/N), then

γ N = exp{norders[ f̃ (z)− 1]} + O

(
1

N

)
(

1

γ
− 1

)
= −norders[ f̃ (z)− 1]

N
+ o

(
1

N

)
in the preceding expression gives

F(z) = γ N exp

[
Nc

2

(
1

γ
− 1

)]
= exp{norders[ f̃ (z)− 1]} exp

{−Cnorders

2
[ f̃ (z)− 1]

}
= exp

{
norders

(
1− c

2

)
[ f̃ (z)− 1]

}
+ O

(
1

N

)
.
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We finally obtain

F(z) ∼ exp

{
norder

(
1− c

2

)
[ f̃ (z)− 1]

}
.

Let us now examine the implication of the above relation for the moments ofD and1x.
Expanding both sides in a Taylor series yields

µ2(D) = Norder

(
1− c

2

)
µ2(Xα),

µ4(D) = Norder

(
1− c

2

)
µ4(Xα)+ 3N2

order

(
1− c

2

)2

µ2(Xα)
2,

which implies that the kurtosisκ(D) of the aggregate excess demand is given by

κ(D) = µ4(Xα)

Norder

(
1− c

2

)
µ2(Xα)

.


