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(Last modified: Feb 14, 1999; Printed: July 10, 2004)

Abstract

We use methods of random matrix theory to analyze the cross-correlation

matrix C of price changes of the largest 1000 US stocks for the 2-year pe-

riod 1994-95. We find that the statistics of most of the eigenvalues in the

spectrum of C agree with the predictions of random matrix theory, but there

are deviations for a few of the largest eigenvalues. We find that C has the

universal properties of the Gaussian orthogonal ensemble of random matrices.

Furthermore, we analyze the eigenvectors of C through their inverse partic-

ipation ratio and find eigenvectors with large inverse participation ratios at

both edges of the eigenvalue spectrum—a situation reminiscent of results in

localization theory.
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There has been much recent work applying physics concepts and methods to the study

of financial time series [1–14]. In particular, the study of correlations between price changes

of different stocks is both of scientific interest and of practical relevance in quantifying the

risk of a given stock portfolio [1,2]. Consider, for example, the equal-time correlation of

stock price changes for a given pair of companies. Since the market conditions may not be

stationary, and the historical records are finite, it is not clear if a measured correlation of

price changes of two stocks is just due to “noise” or genuinely arises from the interactions

among the two companies. Moreover, unlike most physical systems, there is no “algorithm”

to calculate the “interaction strength” between two companies (as there is for, say, two spins

in a magnet). The problem is that although every pair of companies should interact either

directly or indirectly, the precise nature of interaction is unknown.

In some ways, the problem of interpreting the correlations between individual stock-price

changes is reminiscent of the difficulties experienced by physicists in the fifties, in interpreting

the spectra of complex nuclei. Large amounts of spectroscopic data on the energy levels were

becoming available but were too complex to be explained by model calculations because the

exact nature of the interactions were unknown. Random matrix theory (RMT) was devel-

oped in this context, to deal with the statistics of energy levels of complex quantum systems

[15,16]. With the minimal assumption of a random Hamiltonian, given by a real symmetric

matrix with independent random elements, a series of remarkable predictions were made

and successfully tested on the spectra of complex nuclei [15]. RMT predictions represent

an average over all possible interactions [16]. Deviations from the universal predictions of

RMT identify system-specific, non-random properties of the system under consideration,

providing clues about the nature of the underlying interactions [17,18].

In this letter, we apply RMT methods to study the cross-correlations [10] of stock price

changes. First, we demonstrate the validity of the universal predictions of RMT for the

eigenvalue statistics of the cross-correlation matrix. Second, we calculate the deviations

of the empirical data from the RMT predictions, obtaining information that enables us to

identify cross-correlations between stocks not explainable purely by randomness.
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We analyze a data base [20] containing the price Si(t) of stock i at time t, where i =

1, . . . , 1000 denotes the largest 1000 publicly-traded companies and the time t runs over the

2-year period 1994-95. From this time series, we calculate the price change Gi(t, ∆t), defined

as

Gi(t, ∆t) ≡ ln Si(t + ∆t) − ln Si(t) , (1)

where ∆t = 30 min is the sampling time scale. The simplest measure of correlations between

different stocks is the equal-time cross-correlation matrix C which has elements

Cij ≡
〈GiGj〉 − 〈Gi〉〈Gj〉

σiσj

, (2)

where σi ≡
√

〈G2
i 〉 − 〈Gi〉2 is the standard deviation of the price changes of company i, and

〈· · ·〉 denotes a time average over the period studied [20].

We analyze the statistical properties of C by applying RMT techniques. First, we diag-

onalize C and obtain its eigenvalues λk —with k = 1, · · · , 1000—which we rank-order from

the smallest to the largest. Next, we calculate the eigenvalue distribution [10] and compare

it with recent analytical results for a cross-correlation matrix generated from finite uncorre-

lated time series [21]. Figure 1 shows the eigenvalue distribution of C, which deviates from

the predictions of Ref. [21], for large eigenvalues λk ≥ 1.94 (see caption of Fig. 1). This

result is in agreement with the results of Ref. [10] for the eigenvalue distribution of C on a

daily time scale.

To test for universal properties, we first calculate the distribution of the nearest-neighbor

spacings s ≡ λk+1 − λk. The nearest-neighbor spacing is computed after transforming the

eigenvalues in such a way that their distribution becomes uniform—a procedure known

as unfolding [17–19]. Figure 2(a) shows the distribution of nearest-neighbor spacings for

the empirical data, and compares it with the RMT predictions for real symmetric random

matrices. This class of matrices shares universal properties with the ensemble of matrices

whose elements are distributed according to a Gaussian probability measure—the Gaussian

orthogonal ensemble (GOE). We find good agreement between the empirical data and the

GOE prediction,
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PGOE(s) =
πs

2
exp

(

−π

4
s2

)

. (3)

A second independent test of the GOE is the distribution of next-nearest-neighbor spac-

ings between the rank-ordered eigenvalues [17]. This distribution is expected to be identical

to the distribution of nearest-neighbor spacings of the Gaussian symplectic ensemble (GSE)

as verified by the empirical data [Fig. 2(b)].

The distribution of eigenvalue spacings reflects correlations only of consecutive eigen-

values but does not contain information about correlations of longer range. To probe any

“long-range” correlations, we first calculate the number variance Σ2 which is defined as

the variance of the number of unfolded eigenvalues in intervals of length L around each of

the eigenvalues [17–19,22]. If the eigenvalues are uncorrelated, Σ2 ∼ L. For the opposite

case of a “rigid” eigenvalue spectrum, Σ2 is a constant. For the GOE case, we find the

“intermediate” behavior Σ2 ∼ ln L, as predicted by RMT [Fig. 2(c)].

A second way to measure “long-range” correlations in the eigenvalues is through the

spectral rigidity ∆, defined to be the least square deviation of the unfolded cumulative

eigenvalue density from a fit to a straight line in an interval of length L [17–19,23]. For

uncorrelated eigenvalues, ∆ ∼ L, whereas for the rigid case ∆ is a constant. For the GOE

case we find ∆ ∼ ln L as predicted by RMT [Fig. 2(d)].

Having demonstrated that the eigenvalue statistics of C satisfies the RMT predictions,

we now proceed to analyze the eigenvectors of C. RMT predicts that the components of the

normalized eigenvectors of a GOE matrix are distributed according to a Gaussian probability

distribution with mean zero and variance one. In agreement with recent results [10], we

find that eigenvectors corresponding to most eigenvalues in the “bulk” (λk ≤ 2) follow this

prediction. On the other hand, eigenvectors with eigenvalues outside the bulk (λk ≥ 2) show

marked deviations from the Gaussian distribution. In particular, the vector corresponding

to the largest eigenvalue λ1000 deviates significantly from the Gaussian distribution predicted

by RMT.

The component ℓ of a given eigenvector relates to the contribution of company ℓ to
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that eigenvector. Hence, the distribution of the components contains information about the

number of companies contributing to a specific eigenvector. In order to distinguish between

one eigenvector with approximately equal components and another with a small number of

large components we define the inverse participation ratio [17,24]

Ik ≡
1000
∑

ℓ=1

[ukℓ]
4 , (4)

where ukℓ, ℓ = 1, . . . , 1000 are the components of eigenvector k. The physical meaning of Ik

can be illustrated by two limiting cases: (i) a vector with identical components ukℓ ≡ 1/
√

N

has Ik = 1/N , whereas (ii) a vector with one component uk1 = 1 and all the others zero

has Ik = 1. Therefore, Ik is related to the reciprocal of the number of vector components

significantly different from zero.

Figure 3 shows Ik for eigenvectors of a matrix generated from uncorrelated time series

with a power law distribution of price changes [8]. The average value of Ik is 〈I〉 ≈ 3×10−3 ≈

1/N indicating that the vectors are extended [24,25]—i.e., almost all companies contribute to

them. Fluctuations around this average value are confined to a narrow range. On the other

hand, the empirical data show deviations of Ik from 〈I〉 for a few of the largest eigenvalues.

These Ik values are approximately 4-5 times larger than 〈I〉 which suggests that there are

groups of approximately 50 companies contributing to these eigenvectors. The corresponding

eigenvalues are well outside the bulk, suggesting that these companies are correlated [18].

Surprisingly, we also find that there are Ik values as large as 0.35 for vectors corresponding

to the smallest eigenvalues λi ≈ 0.25 [26]. These deviations from the average are two orders

of magnitude larger than 〈I〉, which suggests that the vectors are localized [24,25]—i.e., only

a few companies contribute to them. The small values of the corresponding eigenvalues

suggests that these companies are uncorrelated with each other.

The presence of vectors with large Ik also arises in the theory of Anderson localization

[27]. In the context of localization theory, one frequently finds “random band matrices” [24]

containing extended states with small Ik in the middle of the band, whereas edge states are

localized and have large Ik. Our finding of localized states for small and large eigenvalues
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of the cross-correlation matrix C is reminiscent of Anderson localization and suggests that

C may be a random band matrix [28]

In summary, we find that the most eigenvalues in the spectrum of the cross-correlation

matrix of stock price changes agree surprisingly well with the universal predictions of random

matrix theory. In particular, we find that C satisfies the universal properties of the Gaussian

orthogonal ensemble of real symmetric random matrices. We find through the analysis of

the inverse participation ratio of its eigenvectors that C may be a random band matrix,

which may support the idea that a metric can be defined on the space of companies and

that a distance can be defined between pairs of companies [29]. Hypothetically, the presence

of localized states may allow us to draw conclusions about the “spatial dimension” of the

set of stocks studied here and about the “range” of the correlations between the companies.
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FIG. 1. The probability density of the eigenvalues of the normalized cross-correlation matrix C

for the 1000 largest stocks in the TAQ database for the 2-year period 1994-95 [20]. Recent analytical

results [21] for cross-correlation matrices generated from uncorrelated time series predict a finite

range of eigenvalues depending on the ratio R of the length of the time series to the dimension

of the matrix [10]. In our case R = 6.448 corresponding to eigenvalues distributed in the interval

0.37 ≤ λk ≤ 1.94 [21]. However, the largest eigenvalue for the 2-year period (inset) is approximately

30 times larger than the maximum eigenvalue predicted for uncorrelated time series. The inset

also shows the largest eigenvalue for the cross-correlation matrix for 4 half-year periods—denoted

A, B, C, D. The arrow in the inset corresponds to the largest eigenvalue for the entire 2-year

period, λ1000 ≈ 50. The distribution of eigenvector components for the large eigenvalues, well

outside the bulk show significant deviations from the Gaussian prediction of RMT, which suggests

“collective” behavior or correlations [18] between different companies. The largest eigenvalue would

then correspond to the correlations within the entire market [10].

11



0.0 1.0 2.0 3.0 4.0
Eigenvalue spacings

0.0

0.4

0.8

1.2

   
   

   
   

   
   

   
   

   
   

   
  P

ro
ba

bi
lit

y 
de

ns
ity

0.0

0.4

0.8

1.2
(a) nn

(b) nnn

0.0 2.0 4.0 6.0 8.0 10.0 12.0
L

0.0

0.1

0.2

0.3

R
ig

id
ity

a = 5
a = 10
a = 15
a = 20

0.0

0.4

0.8

1.2

1.6

V
ar

ia
nc

e (c)

(d)

Uncorrelated GOE

12



FIG. 2. Comparison of the RMT predictions for the spacing distributions with results for em-

pirical cross-correlation matrix . (a) Nearest-neighbor (nn) spacing distribution of the eigenvalues

of C after unfolding. We use the Gaussian broadening procedure [19]. The eigenvalue distribution

can be considered as a sum of delta functions about each eigenvalue, λk, each of which is then

“broadened” by choosing a Gaussian distribution with standard deviation (λk+a − λk−a)/2, where

2a is the size of the window used for broadening [19]. Here, a = 15, the optimum value obtained

from Fig. 2(d). The solid line is the GOE prediction, Eq. (3), and the dashed line is a fit to the one

parameter Brody distribution p(s) ≡ B (1 + β) sβ exp(−Bsβ+1), with B ≡ [Γ(β+2

β+1
)]1+β . The fit

yields β = 0.99±0.02, in good agreement with the GOE prediction β = 1. A Kolmogorov-Smirnov

test suggests that the GOE is 105 times more likely to be the correct description than the Gaussian

unitary ensemble, and 1020 times more likely than the GSE. Furthermore, at the 80% confidence

level, the Kolmogorov-Smirnov test cannot reject the hypothesis that the GOE is the correct de-

scription. (b) Next-nearest-neighbor (nnn) spacing distribution of C. RMT predicts that, for the

GOE, the distribution of next-nearest-neighbor spacing should follow the same distribution as the

nearest-neighbor spacing for the GSE. This prediction is confirmed for the empirical data both

visually and by a Kolmogorov-Smirnov test that at the 40% confidence level cannot reject the

hypothesis that the GSE is the correct distribution. (c) Number variance and (d) spectral rigidity

of C for different values of the unfolding parameter a, as compared to the exact expression for

the GOE (solid line) and the uncorrelated case (dashed line) . As a increases, both the number

variance and the spectral rigidity approach the theoretical curve for the GOE while the spacing

distribution remains essentially unchanged. We choose a = 15 as the optimal-value.
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FIG. 3. Inverse participation ratio Ik for each of the 1000 eigenvectors. As a control, we

show in the inset the Ik values for the eigenvectors of a cross-correlation matrix computed from

uncorrelated independent power-law distributed time series [8] of the same length as the data.

Empirical data show marked peaks at both edges of the spectrum, whereas the control shows only

small fluctuations around the average value 〈I〉 = 3 × 10−3. The large Ik values for the largest

eigenvalues are to be expected from Fig. 1, but the large values of Ik for the small eigenvalues are

surprising. Large Ik values at the edges of the eigenvalue spectrum is a situation often found in

localization theory.
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