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Abstract
We have analysed the cross correlations of daily fluctuations for N = 6358
US stock prices during the year 1999. From those N(N − 1)/2 correlation
coefficients, the minimum spanning tree (MST) has been built. We have
investigated the topology exhibited by the MST. Even though the average
coordination number of stocks is 〈n〉 ≈ 2, the variance σ of the topological
distribution f (n) diverges! More precisely, we have found that f (n) ∼ n−2.2

holds over two decades. We have studied the topological correlations for
neighbouring nodes: an extremely broad set of local configurations exists,
confirming the divergence of σ .

In a series of works [1, 2], Mantegna and co-workers have
studied the minimum spanning tree (MST) of financial data,
mainly the cross correlations between N different stocks.
Building such a MST is a common method in spin glasses
for putting into evidence the primary structure (the skeleton)
of a complex system with a non-trivial dynamics [3]. The MST
captures the cooperative behaviours behind the stock market.

Herein, we report some analysis of the topology exhibited
by the MST3. Due to initial public offerings (IPOs) and
mergers, it is difficult to perform some MST-analysis over
long periods. The number of companies is indeed always
evolving. We focused our work mainly on N different US
companies during the year 1999. Those stocks are all traded
on the Nasdaq, NYSE and AMEX places. In fact, our database
contains about 9000 different US stocks. Some of them
are illiquid, i.e. not traded every day. Those illiquid stocks
were not considered. We have selected N = 6358 different
companies in our study.

Cross correlation ρij for the pair ij of stocks is computed
as

ρij = 〈YiYj 〉 − 〈Yi〉〈Yj 〉√
(〈Y 2

i 〉 − 〈Yi〉2)(〈Y 2
j 〉 − 〈Yj 〉2)

(1)

where Yi is the daily fluctuation of the log of the stock i price.

3 A Belgian company, Market Topology SPRL, provides complementary
information and updated data about this work. See their website
http://www.market-topology.com.
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Figure 1. Three typical configurations of the nearest
neighbourhood of three companies on the MST: (a) AMZN
(Amazon.com Inc.) connected to EBAY (eBay Inc.), CMGI (CMGI
Inc.) and SOFN (SoftNet Systems Inc.); (b) YHOO (Yahoo! Inc.) is
connected to ARBA (Ariba Inc.) and CMGI; (c) KO (Coca-Cola
Company) is connected to PEP (PepsiCo, Inc.), CCE (Coca-Cola
Enterprises, Inc.) and AVP (Avon Products Inc.). The topological
indices n are given.

The MST has been built following Kruskal’s algorithm [5] in
order to find the N − 1 most important correlated pairs of
stocks among the N(N − 1)/2 = 20 208 903 possible pairs!
The Kruskal algorithm assures the unicity of the structure
and avoids loops. A tree is thus formed. Figure 1 presents
three parts of the MST: AMZN (Amazon.com Inc.), YHOO
(Yahoo! Inc.), KO (Coca-Cola Company) and their nearest
neighbours. AMZN is connected to EBAY (eBay Inc.), CMGI
(CMGI Inc.) and SOFN (SoftNet Systems Inc.). YHOO is
connected to ARBA (Ariba Inc.) and also connected to CMGI
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Figure 2. Two different trees and their respective topological
distributions f (n). Each tree is made of 22 sites and 21 links. (a)
Hierarchical tree with a constant branching ratio fixed to 3. (b)
Random tree built by gluing successive links on randomly chosen
extremitites.

such that YHOO is the next nearest neighbour of AMZN.
KO is connected to PEP (PepsiCo, Inc.), CCE (Coca-Cola
Enterprises, Inc.) and AVP (Avon Products Inc.). In addition
to KO, AVP is connected to 42 other stocks!

One can observe a clustering of companies being
in the same sector such as energy, technology, internet,
transportation, food and cosmetics, etc. The clustering in
various sectors, each being a branch of the MST, has been
previously observed in [1]. In addition to the sectorization, we
have observed a global clustering of stocks traded on different
market places. Most Nasdaq stocks are located around the
QQQ ticker (Nasdaq Composite ticker), and largest stocks of
NYSE are located around DIA (Dow Jones ticker).

One can distinguish three types of topological configura-
tions for the N companies: (i) important nodes, (ii) links and
(iii) dangling ends. The important nodes (like AVP) should
correspond to companies controlling or mediating the daily
fluctuations of their neighbourhood. The links (like YHOO)
are mediating the information (fluctuation) along the branches.
The dangling ends (like PEP) are supposed to be the less in-
fluent companies, or to be those less influenced by the market
fluctuations. The latter companies do not necessary follow the
indices.

From the mathematical point of view, we can associate
a ‘coordination number’ 1 � n � (N − 1) at each site of
the tree. The coordination number n is defined as the number
of nearest neighbours of the considered site. The statistics of
the tree is thus determined by the statistical distribution f (n)

of coordination numbers. In order to illustrate the parameter
n, figure 2 shows two different trees, each being made of 22
sites and 21 links. The first structure is a hierarchical (Cayley)
tree with a constant branching ratio except for dangling ends.
The branching ratio has been set to 3. The f distribution
is also illustrated: only n = 1 and n = 3 sites are
observed. The second tree is a random tree, i.e. a tree built by
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Figure 3. Log–log plot of the topological distribution f (n) of the
MST. The continuous line is a fit with the power law (7).

gluing successive links on randomly chosen extremitites. This
stochastic aggregation process for generating the tree produces
a distribution of n values ranging from 1 to 5 in this example.
One expects that the MST of the US stockmarket looks similar
to a random tree. This hypothesis will be tested below.

The mean coordination number is given by

〈n〉 =
∞∑

n=1

nf (n). (2)

If one multiplies both sides of this equation by N , the
summation becomes equivalent to counting twice all the N −1
connections along the tree. As a consequence, one has

〈n〉 = 2
N − 1

N
(3)

which is approximately equal to 2 when the number of sites
N becomes large, i.e. in our case. The above mathematical
property is quite general and holds for all types of trees. In the
following, we will consider that 〈n〉 ≈ 2.

The first moment 〈n〉 of f cannot give any information
about the topology of trees since it does not reflect the shape of
the tree. Both trees in figure 2 have a mean topological number
〈n〉 = 21

11 ! However, the second moment σ of the f distribution
can be quite useful. Let us assume a topological correlation in
between neighbouring nodes. The Aboav law, a well-known
law in the physics of random cellular structures [4], stipulates
that topological correlations can be captured by the following
relationship

mn = A +
B

n
(4)

where mn is the mean coordination number of the nearest
neighbours of a node characterized by a coordination number
n. A and B are positive constants to be determined. The form
of the Aboav law implies that important nodes with large n are
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Figure 4. The (mn,
1
n
) diagram for the N = 6358 companies. No

Aboav (linear) behaviour emerges.

more favourably connected to dangling ends. Indeed, when the
coordination number becomes large and reaches n → N − 1,
which correspond to a central node connected to N−1 dangling
ends, one should obtain mn = 1. This leads to the constraint4

A = 1. For a hierarchical tree with a constant branching ratio
n, one should have the condition mn = n, i.e. no correlation
(B = 0). That case is of course unrealistic for the present study.
For a random tree, one expects that the statistical average of
the product nmn is similar to 〈n2〉, one has

〈n〉 + B = 〈nmn〉 ≈ 〈n2〉 = σ 2 + 4 (5)

and thus B = σ 2 + 2 and the Aboav law becomes

mn = 1 +
σ 2 + 2

n
(6)

for any kind of tree with a large number N of nodes. The above
equation is only valid in the hypothesis of a random topology.

We have defined some mathematical tools (f (n), σ and
the Aboav law) for describing the topology of trees in full
generality. Let us investigate the specific topology of financial
MST. The log–log plot of the topological distribution is shown
in figure 3. The distribution f (n) is broad and looks like a
power law

f (n) ∼ n−α (7)

holding over two decades with an exponent α = 2.2±0.1. This
result means that the variance of the f (n) distribution diverges
even when the mean 〈n〉 remains finite (see below)! In other

4 This constraint has a counterpart A = 5 in the case of foams [4].

words, nodes with high coordination numbers are not so rare.
For random trees, one expects an exponential decay of f (n)

and quite different statistics. The market seems to be self-
organized in a coordination invariant structure, similarly to
self-organized critical structures [6]! One should also remark
that our results have an important graphical consequence: large
n values for nodes are not so rare such that it is extremely hard
to draw the entire MST.

The power law (7) and the divergence of σ are not
numerical artefacts. Indeed, we have checked the Aboav-like
law for which the variance of the topological distribution is
relevant (see above). Figure 4 presents the (mn,

1
n
) diagram

in which the Aboav law should be a line with a slope σ 2 + 2.
However, the N values of the measured mn on the MST are
sparsely distributed in the diagram such that no relevant linear
fit can be performed. Equation (6) is not valid expressing
that statistical averages cannot be taken as for usual random
topological structures. We argue that the extremely broad
dispersion of local configurations in (mn,

1
n
) expresses the

divergence of σ .
In summary, we put into evidence the emergence of some

order out of the apparent disorder of the stock markets! Indeed,
we have found signatures of non-trivial correlations in the
topology of stock markets. We did the same analysis for
subsets of financial data and we obtained the same behaviour
(a power law for f (n) and a divergence of σ ). For shifted
periods, the main results do not change: the structure evolves
slowly and locally. Indeed, month after month, a node keeps
the majority of its neighbours5. The non-randomness of the
stock market topology is thus a robust property.
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