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Abstract. I find a hierarchical arrangement of stocks traded in a financial market by investigating the
daily time series of the logarithm of stock price. The topological space is a subdominant ultrametric space
associated with a graph connecting the stocks of the portfolio analyzed. The graph is obtained starting from
the matrix of correlation coefficient computed between all pairs of stocks of the portfolio by considering the
synchronous time evolution of the difference of the logarithm of daily stock price. The hierarchical tree of the
subdominant ultrametric space associated with the graph provides a meaningful economic taxonomy.

PACS. 02.50.Sk Multivariate analysis – 89.90.+n Other areas of general interest to physicists

Financial markets are well-defined complex systems. They
are studied by economists, mathematicians and, recently,
also by physicists. The paradigm of mathematical fi-
nance is that the time series of stock returns are un-
predictable [1]. Within this paradigm, time evolutions of
stock returns are well described by random processes. A
key point is if the random processes of stock returns time
series of different stocks are uncorrelated or, conversely, if
economic factors are present in financial markets and are
driving several stocks at the same time. Ross introduced
common economic factors in his arbitrage pricing theory
model [2].

On the side of modeling of financial markets by using
tools and procedures developed to model physical systems
[3–11], there is the need to quantify a distance between dif-
ferent stocks traded in a financial markets. In the present
analysis, I detect a hierarchical structure present in a port-
folio of n stocks traded in a financial market. The observ-
able which is used to detect the hierarchical arrangement
of the stocks of a given portfolio is the synchronous cor-
relation coefficient of the daily difference of logarithm of
closure price of stocks. The correlation coefficient is com-
puted between all the possible pairs of stocks present in
the portfolio in a given time period. The goal of the present
study is to obtain the taxonomy of a portfolio of stocks
traded in a financial market by using the information of
time series of stock prices only.

In this letter, I report results obtained by investigat-
ing the portfolio of the stocks used to compute the Dow
Jones Industrial Average (DJIA) index and the portfolio
of stocks used to compute the Standard and Poor’s 500
(S&P 500) index in the time period from July 1989 to
October 1995. Both indices describe the performance of
the New York Stock Exchange. The starting point of my
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investigation is to quantify the degree of similarity be-
tween the synchronous time evolution of a pair of stock
price by the correlation coefficient [12]

ρij =
〈YiYj〉 − 〈Yi〉〈Yj〉√

(〈Y 2
i 〉 − 〈Yi〉2)(〈Y 2

j 〉 − 〈Yj〉2)
(1)

where i and j are the numerical labels of stocks, Yi =
lnPi(t)− lnPi(t − 1) and Pi(t) is the closure price of the
stock i at the day t. The statistical average is a temporal
average performed on all the trading days of the investi-
gated time period.

For both portfolios, I determine the n × n matrix
of correlation coefficients for daily logarithm price differ-
ences (which almost coincides with returns). By definition,
ρij can vary from −1 (completely anti-correlated pair of
stocks) to 1 (completely correlated pair of stocks). When
ρij = 0 the two stocks are uncorrelated.

The matrix of correlation coefficients is a symmetric
matrix with ρii = 1 in the main diagonal. Hence, in each
portfolio, n (n− 1)/2 correlation coefficients characterize
the matrix completely. An investigation of the statistical
properties of the set of correlation coefficients is published
elsewhere [13]. In this letter, I investigate the correlation
coefficient matrix to detect the hierarchical organization
present inside a portfolio of stocks traded in a stock mar-
ket. In the search for an appropriate taxonomy of stocks
of a given portfolio, I first look for a metric. The corre-
lation coefficient of a pair of stocks cannot be used as a
distance between the two stocks because it does not fulfill
the three axioms that define a metric. However a metric
can be defined using as distance a function of the correla-
tion coefficient. An appropriate function is [14]

d(i, j) =
√

2 (1− ρij). (2)
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With this choice d(i, j) fulfills the three axioms of a
metric distance – (i) d(i, j) = 0 if and only if i = j;
(ii) d(i, j) = d(j, i) and (iii) d(i, j) ≤ d(i, k) + d(k, j) [15].
The first axiom is valid because d(i, j) = 0 if and only
if the correlation is total (ρ = 1, namely only if the two
stocks perform the same stochastic process). The second
axiom is valid because the correlation coefficient matrix
and hence the distance matrix D is symmetric by defi-
nition. The third axiom is valid because equation (2) is
equivalent to the Euclidean distance between two vectors
Ỹi and Ỹj which are obtained from the time series Yi
and Yj by considering each record of the time series a
component of the vector. The vector obtained must have
a unitary norm, namely it is obtained by subtracting to
each record the average value and by normalizing it to its
standard deviation.

The distance matrix D is then used to determine the
minimal spanning tree [16] connecting the n stocks of the
portfolio. The method of constructing a MST linking a set
of n objects is direct [17]. The MST of a set of n elements
is a graph with n − 1 links. Here I shortly describe this
method by illustrating the determination of some links of
the MST obtained for the DJIA portfolio of stocks in the
investigated time period. In the following I will indicate
each stock of the portfolio with its tick symbol. For ex-
ample I indicate with CHV the Chevron Corp. and with
XON the Exxon Corp. The correspondence between each
tick symbol and the corresponding name of the company
may be easily find in several web pages, one possibility is
www.forbes.com.The MST associated with an Euclidean
distance matrix can be obtained as follows. One first or-
ders the nondiagonal elements of the distance matrix D
in increasing order. For example, in the present case the
shortest 10 distances observed for the portfolio of stocks
of the DJIA index are CHV–TX d = 0.949, TX–XON
d = 0.962, CHV–XON d = 0.982, KO–PG d = 1.040, GE–
KO d = 1.063, AA–IP d = 1.074, GE–MMM d = 1.078,
KO–MCD d = 1.084, GE–T d = 1.090 and DD–GE
d = 1.095. The MST is progressively built up by linking
all the elements of the set together in a graph character-
ized by a minimal distance between stocks. One starts with
the pair of elements with the shortest distance. In our case
CHV and TX (d = 0.949). At this stage the part already
identified of the MST, which I address here as growing
MST is just composed by these two elements. The next-
smallest distance is between TX and XON (d = 0.962).
Hence, at this step one can link XON at TX and mod-
ify the growing MST as CHV–TX–XON. The next pair of
stocks in the ordered list of distances is CHV and XON,
which need not to be inserted in the growing MST because
both stocks have been already sorted to it. By continuing,
one next has the KO and PG pair (d = 1.040). None of
these stocks is present in the growing MST. Hence both
must be sorted to it. At this step, the growing MST results
to be composed by two distinct regions, which are CHV–
TX–XON and KO–PG. The next pair of stocks comprises
GE and KO (d = 1.063). The growing MST is then mod-
ified as CHV–TX–XON and GE–KO–PG. Then we have
the pair of stocks AA–IP with distance d = 1.074. They

are not in the growing MST and they need to be sorted to
it. Hence the growing MST assumes the form CHV–TX–
XON, GE–KO–PG and AA-IP. In other words, at this
step three distinct groups of stocks are observed in the
growing MST. By looking at the other distances in the
list one notes that all the new elements (MMM,MCD, T
and DD) need to be linked to the MST and in particular
to the group of stocks GE–KO–PG. Specifically MMM, T
and DD are to be linked to GE (which has at this stage 4
links) while MCD is to be linked to KO (which has at this
stage 3 links). At a given stage a pair of stocks with both
stocks already sorted to the growing MST but in differ-
ent groups is detected in the ordered list of distances. For
example in the present case at the distance d = 1.110 the
pair of stocks composed by IP and MMM is detected. In
the growing MST the two groups containing MMM and IP
are then linked together through the connection MMM–
IP. By following the above illustrated procedure for all the
n (n−1)/2 distances one eventually obtain the final MST.
In Figure 1a I show the complete MST obtained for the
30 stocks used to compute the DJIA in the investigated
time period. The minimal spanning tree (MST) is attrac-
tive because provides an arrangement of stocks which se-
lects the most relevant connections of each element of the
set. Moreover the minimal spanning tree gives, in a direct
way, the subdominant ultrametric [18] hierarchical organi-
zation of the points (stocks) of the investigated portfolio.
The subdominant ultrametric can be obtained as follows.
The knowledge of the MST allows us to determine the
subdominant ultrametric distance matrix D<. This ultra-
metric matrix is obtained by defining the subdominant
ultrametric distance d<(i, j) between i and j as the max-
imum value of any Euclidean distance d(k, l) detected by
moving in single steps from i to j through the shortest
path connecting i and j in the MST. For example the ul-
trametric distance between XON and CHV is d< = 0.962
because the maximum Euclidean two point distance de-
tected by moving from XON to CHV in the MST is the Eu-
clidean distance between XON and TX which is d = 0.962.
It is worth noting that the Euclidean distance between
XON and CHV is d = 0.982. Hence in the subdominant
ultrametric space XON has the same ultrametric distance
from TX and CHV (while this statement it is of course not
true in the Euclidean space). This is shown in the hierar-
chical tree by linking XON to the CHV and TX branch
at an ultrametric distance d<(i, j) = 0.962. This group of
three stocks is then linked to the other group of stocks in
the hierarchical tree (right part of the tree in Fig. 1b) at
an ultrametric distance d< = 1.131 (which is determined
by the link of the MST between DD and XON ). The de-
termination of the hierarchical tree of a subdominant ul-
trametric is then completely controlled by the ultrametric
distance matrix [18]. It is worth pointing out that by using
the detected subdominant ultrametric space it is possible
to obtain a taxonomy of the investigated elements which
is uniquely defined without any further assumption.

In the rest of this letter, I will show that the taxon-
omy found through the minimal spanning tree associated
with the distance matrix D is of great interest from an
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Fig. 1. (a) Minimal spanning tree connecting the 30 stocks used to compute the Dow Jones Industrial Average. The 30
stocks are labeled by their tick symbols. The distance between the stocks is bounded as: CHV-TX 0.90 < d(i, j) ≤ 0.95;
XON–TX 0.95 < d(i, j) ≤ 1.00; KO-PG 1.00 < d(i, j) ≤ 1.05; MMM–GE–KO, DD–GE–T, AA–IP and MRK–KO–MCD
1.05 < d(i, j) ≤ 1.10; CAT–IP–MMM, AXP–JPM–GE–GM, BA–GE–UTX, DD–XON and MO–PG 1.10 < d(i, j) ≤ 1.15; DIS–
GE–EK, DD–UK, BS–IP–ALD and GE–WX 1.15 < d(i, j) ≤ 1.20; AA–GT, GE–IBM, KO–Z and IP–S 1.20 < d(i, j) ≤ 1.25. (b)
Hierarchical tree of the subdominant ultrametric space associated with the minimal spanning tree of a). In the hierarchical tree,
several groups of stocks homogeneous with respect to the economic activities of the companies are detected: (i) oil companies
(Exxon (XON), Texaco (TX) and Chevron (CHV)); (ii) raw material companies (Alcoa (AA) and International paper (IP)) and
(iii) companies working in the sectors of consumer nondurable products (Procter & Gamble (PG)) and food and drinks (Coca
Cola (KO)). The ultrametric distance at which individual stocks are branching from the tree is given by the y axis.

economic point of view. In particular, by assuming this
kind of hierarchical organization, I am able to isolate
groups of stocks, which make sense from an economic
point of view by starting from the information carried
by the time series of price only. The classification of the
groups of stocks obtained with my analysis of the corre-
lation coefficients is performed by using the industry and
subindustry sectors reported in the Forbes 49th annual
report on American industry. In Figure 1a, I show the
minimal spanning tree for the DJIA portfolio of stocks.
Each circle represents a stock, labeled by its tick symbol.
Segments are linking connected stocks. The approximate
distance between stocks is given in the figure caption. In
Figure 1b the hierarchical tree of the subdominant ultra-
metric [18] associated to the MST is shown. An inspec-
tion of the MST and of the associated hierarchical tree
shows the existence of three groups of stocks. The observed
grouping has a direct economic explanation. The more ev-
ident and strongly connected group is the group of stocks
CHV, TX and XON namely Chevron, Texaco and Exxon.
These three companies are working in the same industry
(energy) and in the same subindustry (international oils).
AA and IP, namely Alcoa (working in the subindustry sec-
tor of nonferrous metals) and International Paper (work-
ing in the subindustry sector of paper and lumber) form
a second group. Both companies provide raw materials.
The third group involves companies which are in industry
sectors which deals with consumer nondurables (Procter
& Gamble, PG) and food drink and tobacco (Coca Cola,
KO).

The same investigation is repeated for the set of stocks
used to compute the S&P 500 index. In this case the larger

size of the portfolio allows to perform a more refined test of
the detected hierarchical structure of stocks. In my analy-
sis, I considered only the companies which were present in
the S&P 500 index for the entire period investigated. With
this constrain the portfolio is composed of 443 stocks. Due
to the size of the portfolio investigated, the obtained min-
imal spanning tree cannot be shown in a single figure in
a legible way. As an illustrative example, I show a part of
the MST in Figure 2. A group of financial services, capital
goods, retailing, food drink & tobacco and consumer non-
durables companies is observed in this strongly connected
group of stocks. The portfolio of stocks used to compute
the S&P 500 index is characterized by a hierarchical struc-
ture of stocks which is much more detailed than the one
observed in the case of the DJIA portfolio. The structure
of the minimal spanning tree of the portfolio of stocks of
the S&P 500 index shows many groups of stocks which
are homogeneous from an economic point of view. A de-
tailed inspection of the hierarchical tree associated to the
MST provides a large amount of economic information.
It is impossible to put in a single legible figure the com-
plete hierarchical tree of a so broad portfolio. In Figure 3,
I then show only the branching of the tree up to the level
of homogeneous groups. This means lines in the hierarchi-
cal tree shown in Figure 3 are always ending in a group of
stocks which contains at least 2 stocks (but usually more).
The branches of single stocks departing from the tree are
not shown to make the figure readable. In the caption
of Figure 3, I give details about industry sectors and/or
subsectors of stocks belonging to the groups shown in the
figure. With only a few exceptions the groups are homoge-
neous with respect to industry and often also subindustry
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Fig. 2. A partial region of the minimal spanning tree of the
portfolio of stocks used to compute the S&P 500 index. The fig-
ure shows a strongly connected large group of stocks observed
for d<(i, j) < 1.10. Circles represent stocks, which are labeled
by their stock exchange tick symbols. In this region of the MST
financial service companies (AHM, BAC, BBI, BK, BKB, BT,
CCI, CHL, CMB, FFB, FNB, FNM, FTU, GDW, GWF, I,
JPM, MER, ONE, PNC, SNC and WFC), capital goods com-
panies (EMR and GE), retailing companies (HD and WMT),
consumer nondurables companies (CL and PG) and food and
drinks companies (KO and PEP) are found. Du Pont company
(DD) is joining this group of stocks to the group of oil compa-
nies (not shown here).

sectors suggesting that set of stocks working in the same
industry and subindustry sectors respond, in a statistical
way, to the same economic factors.

In some cases, my analysis, based on the statistical
analysis of correlation coefficients between pairs of stock
returns, refines the classification in sectors and subsectors
used by Forbes. For example, ores, aluminum and copper
are all classified metals as industry and nonferrous metals
as subindustry. From my analysis, I detect that they re-
spond to quite different economic factors. Specifically, ores
companies are grouped in a cluster, which is the most dis-
tant from all the others groups of stocks of the tree, while
aluminum and copper companies constitute a subgroup of
the group containing raw materials companies.

The detection of a hierarchical structure in a broad
portfolio of stocks traded in a financial market is consis-
tent with the assumption that the time series of returns of
a stock is affected by a number of economic factors. The
analysis shows that the number and the relative influence
of these factors is specific to each stock. In general, stocks
or groups of stocks departing early from the tree (at high
values of the distance d<(i, j)) are mainly controlled by
economic factors which are specific to the considered
group (for example gold price for the stocks of the group
1 of the tree (see Fig. 3) which is composed only by com-
panies involved in gold mining). When departure occurs
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Fig. 3. Main structure of the hierarchical tree of the portfolio
of stocks used to compute the S&P 500 index. Each line ending
in the bottom corresponds to a group of stocks composed by
at least two stocks. Lines are ending when the first bifurcation
inside the group is observed. Individual stocks departing from
the main tree are not shown for the sake of clarity. Groups
are labeled with integers ranging from 1 to 44. The branch-
ing of each group from the main tree and inside the group
are occurring at a distance given by the d<(i, j) scale. Be-
low, I report for each group detected in the MST the observed
common industry sector and, in parenthesis, the subindustry
sector used in the 49th Forbes annual report of American in-
dustry (accessible on the web at the address www.forbes.com).
1. Metals (nonferrous metals, gold); 2. Construction (residen-
tial builders); 3. No common industry sector; 4. Travel and
transport (trucking and shipping); 5. Consumer nondurables
(photography and toys); 6. No common industry sector; 7. Met-
als (steel); 8. Consumer durables (automotive parts); 9. Travel
and transport (airlines); 10. Entertainment and information
(broadcasting and cable); 11. Financial services (lease and fi-
nance); 12. Energy (oilfield services); 13. Energy (international
oils); 14. No common industry sector. 15. Capital goods (heavy
equipment); 16. Business services and supplies (environmental
and waste); 17. Construction (commercial builders); 18. Con-
sumer durables (automobiles and trucks); 19. Food drink and
tobacco (tobacco); 20. Entertainment and information (pub-
lishing); 21. Forest products and packaging (paper and lum-
ber); 22. Metals (nonferrous materials); 23. Metals (nonferrous
materials); 24. Metals (nonferrous materials); 25. Computer
and communications (peripherals & equipment or software);
26. Electric utilities (regional area); 27. Computer and com-
munications (telecommunications); 28. Retailing (department
stores and drug & discount); 29. no common industry sector;
30. Travel and transport (railroads); 31. Food drink and to-
bacco (food processors); 32. no common industry sector; 33.
Insurance (property & casualty and diversified); 34. Health
(drugs); 35. Health (drugs); 36. Consumer nondurables (per-
sonal products); 37. Food drink and tobacco (beverages); 38.
Retailing (no common subindustry sector (SS)); 39. Capital
goods (electrical equipment); 40. Financial services (no com-
mon SS); 41. Financial services (thrift institutions); 42. Fi-
nancial services (multinational banks); 43. Financial services
(regional banks); 44. Financial services (multinational banks).
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for (moderately) low values of d<, the stocks are affected
either by economic factors which are common to all stocks
and by other economic factors which are specific to the
considered set of stocks. The relative relevance of these
factors is quantified by the length of the segment (or seg-
ments) observed for each group from one branching to the
successive one.

In conclusion, the main aim of this paper is to an-
nounce a method of selecting a topological space (the sub-
dominant ultrametric space) linking stocks traded in a
financial market, which has associated a meaningful eco-
nomic taxonomy. In fact, the present study shows that it
is possible to determine a MST and the associated sub-
dominant ultrametric hierarchical tree, starting from the
distance matrix of equation (2). The detected hierarchical
structure might be useful in the theoretical description of
financial markets and in the search of economic factors
affecting specific groups of stocks. The taxonomy associ-
ated with the obtained hierarchical structure is obtained
by using information present in the time series of stock
prices only. This result shows time series of stock prices
are carrying valuable (and detectable) economic informa-
tion.

I wish to thank Didier Sornette for kindly suggesting me the
rigorous definition of distance given in equation (2). I wish also
to acknowledge financial support from INFM and MURST.
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