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Abstract

We investigate the ordering of voter model on fractal lattices: Sierpinski Carpets and
Sierpinski Gasket. We obtain a power law ordering in all cases, but the dynamics is
found to differ significantly for finite and infinite ramification order of investigated
fractals.

1 Introduction

The Ising model is a well known dynamical model that was investigated in
complex networks and fractal structures [1–6]. However, aside from that model,
there are many other possible dynamics, sharing little in common with behav-
ior of the Ising model. The voter model is an example of such a model, that
exhibits different qualities at a very basic level. Unlike the Ising model, the
voter model has no surface tension and defines a broad universality class [7].
While the Ising model dynamics has been studied on fractal lattices [3–6] little
is known about the behavior of voter model in such geometries.
We have investigated the behavior of the voter model on Sierpinski carpets
and on Sierpinski gasket. It is known [8] that for non-fractal systems the evo-
lution of the voter model depends on the dimensionality of the lattice. For a
large time t the ordering process obeys the following equations
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(ln t)−1, D = 2

1, D > 2
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Fig. 1. The construction of Sierpinski Carpet (SC) fractal network. Three different
basic patterns are at the top, and corresponding fractal networks of level 3 and 2
are at the bottom. The hatched area of patterns are full positions. The first two
carpets from the left have an infinite ramification, while the third one possesses the
ramification R = 4.

where ρ is a fraction of links that form interfaces, i.e. they connect opposite
spins, D is dimensionality, t is time and α = 1 − D/2 is the predicted ex-
ponent. The derivation was made for a hypercubic lattice with an arbitrary
number of neighbors, what directly translates into dimensionality. Later on,
the correlation functions were calculated for the voter model dynamics in such
lattices. The lattices were initially assumed to have an integer dimensionality,
but the resulting equations have a critical point at D = 2. The final result in
[8] was given in the form of such inequalities to emphasize the criticality.

We will focus on the problem of voter model dynamics on fractal lattices.
Since the analytical derivations [8] were not made for fractals, they are not
expected to describe the dynamics correctly, but they form a good reference
point for investigations and comparison.

2 Models

The voter model is a very simple model of opinion formation. Nodes in the
network are agents, each one having an opinion. There are only two possible
opinions, and typically they are considered as +1 and -1, just as Ising spins.
The dynamic rule is simple — the node opinion changes to an opinion of one
randomly chosen neighbor.
The implementation is following: we choose one node at random, and then
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one of its neighbors randomly. The first node assumes the state of the second.
One time step of the dynamics corresponds to the number of individual node
updates equal to the number of nodes in the network, so on average each node
is updated once every time step.
We investigate the voter model behavior on two fractal networks: Sierpinski
Carpet (SC) and Sierpinski Gasket (SG). The SC is constructed according to
a chosen basic pattern. The pattern is a square, divided into n×n squares that
can be full or empty (Fig.1). First, single nodes are taken, and arranged into
the pattern, putting nodes into full positions and skipping empty positions. In
the next step, the resulting structures are arranged into the same pattern. All
neighboring nodes in the resulting pattern are connected creating the fractal
network. The fractal dimension of SC depends on the basic pattern. Classical
SC has 3 × 3 pattern with all the squares full except the central one. Such
SC has a fractal dimension d = ln 8

ln 3
≈ 1.893. We have investigated two types

of SC. One has an infinite ramication and dimensions ranging from ln 28

ln 8
≈

1.6025 to ln 8

ln 3
. The basic pattern is an empty interior surrounded by a full

positions frame, similar to the classical SC (see Fig.1). Second type has the
finite ramification R = 4 and dimensions ranging from ln 6

ln 3
≈ 1.6309 to ln 38

ln 7
≈

1.8693. The basic pattern is full, except for the right and down edge, where
only single positions are full (see Fig.1). Since it is impossible to numerically
investigate true, infinite fractals, we will call the number of steps in what the
network was made a fractal level.
The ramification is the minimum number of links that one needs to remove to
separate a macroscopic part of infinite fractal. The finite ramification means
that the structure has some ”weak points” where only a finite number of links
connect together two parts of an infinite network. The infinite ramification
means that infinite parts of infinite network are connected by infinite number
of links. For example, a regular square lattice has an infinite ramification,
while a tree has the ramification equal to 1.

The SG network is created in the following way (Fig.2). Three nodes are taken
and connected into a triangle. In the middle of each edge a node is created and
the three new nodes are connected between themselves. This way the whole
triangle is divided into four smaller ones. In the next step all three non-central
triangles are treated in the same way, adding nodes in middle of the triangle
edges and linking them toghether. SG has the fractal dimension ln 3

ln 2
≈ 1.5850

and it possesses a finite ramification R = 4.
While in the case of SC, it is easy to create a general class of SC fractals
with different fractal dimensions, we are not aware of any generalization of
SG model that allows easy tuning of fractal dimensions.
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Fig. 2. The construction of Sierpinski Gasket (SG) fractal network of level 5.

3 Results

We have investigated ordering of the voter model in SC and SG fractals.
To measure the disorder, we have used the fraction of interfaces ρ = I/E,
where I is a number of interfaces – links connecting nodes with different spins,
E = N 〈k〉 /2 is the total number of links in the network, k is the node degree
– number of connections the node possesses.

The system orders (Fig.3) with the interface fraction ρ decreasing as a power
of time t. However, due to the finite system size, there are fluctuations around
the power-law. Since the power-law decay becomes slower with time, the fluc-
tuations become more significant, and they push the system into a completely
ordered absorbing state after some time.

To extract the power-law trend, we have averaged the results of many simu-
lations, but to avoid the exponential decay due to complete ordering of the
individual simulations, in a given time step we have averaged only over the
simulations that were not completely ordered at that time. This way we have
circumvented the fluctuations ordering the system and have obtained an ap-
proximation of an infinite network (Fig.4).

We have observed the evolution of the interface fraction ρ in time for networks
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Fig. 3. The ordering process in the SG models for three different simulations. The
data are for fractals of level 8. ρ is the fraction of links that are interfaces.
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SC level 4, pattern 4, D=1.792, R infinite
SC level 3, pattern 5, D=1.723, R infinite
SC level 3, pattern 6, D=1.672, R infinite
SC level 3, pattern 8, D=1.602, R infinite
SG level 8, D=1.585, R=4

Averaged interface density evolution for different networks

Fig. 4. The ordering process after averaging over simulations that did not order
completely. The data are for SC networks with infinite ramification and for SG
networks. All the data are averaged over 100 network simulations and log-binned.
The exponents αexp are obtained from the slopes. The SG simulation data has been
taken with 10 time steps intervals, thus the data starts later than for SC. The
plateau in SG simulations is a combined effect of finite system size and our method
of averaging only over active simulations. 〈ρ〉 is the mean fraction of links that are
interfaces. ”Pattern” is the linear size of the pattern used in carpet creation.
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Fig. 5. The ordering process after averaging over simulations that did not order
completely. The data are for SC networks with finite ramification and averaged over
100 network simulations and log-binned. The exponents αexp are obtained from the
slopes.

with various fractal dimensions between 1 and 2 and both with finite and in-
finite ramification.
The dynamics of SC networks with finite and infinite ramification clearly shows
different behavior (Fig.4,Fig.5). For finite ramification networks oscillations
are present around the general power-law trend. The oscillations are exponen-
tial decay periods, each with different time scale. This can be explained as a
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type ramification level pattern dimension αtheory αexp

SC infinite 5 3 1.8928 0.0536 0.1908 ± 0.0007

SC infinite 4 4 1.7925 0.1038 0.2484 ± 0.0007

SC infinite 3 5 1.7227 0.1387 0.3136 ± 0.0029

SC infinite 3 6 1.6720 0.1640 0.3362 ± 0.0028

SC infinite 3 8 1.6025 0.1988 0.3339 ± 0.0017

SC 4 5 3 1.6309 0.1845 0.3763 ± 0.0008

SC 4 4 4 1.7297 0.1351 0.3393 ± 0.0015

SC 4 3 5 1.7959 0.1021 0.3246 ± 0.0029

SC 4 3 6 1.8394 0.0803 0.3087 ± 0.0038

SC 4 3 7 1.8693 0.0653 0.2947 ± 0.0046

SG 4 9 - 1.5850 0.2075 0.3456 ± 0.0034

regular infinite - - 1.0000 0.5000 0.4973 ± 0.0006

Table 1
Theoretical and experimental exponents α (see Eq.1) for ordering processes in var-
ious networks. The results are averaged over 100 individual simulations. The levels
of fractals were maximized while keeping a number of nodes that allowed the actual
simulations to be completed in a reasonable amount of time. The regular network
was a simple 1-dimensional chain with 〈k〉 = 4 (first and second nearest neighbors
connected) and periodic boundary conditions. The pattern column shows the linear
size of the pattern used in carpet creation.

complete ordering of weakly connected modules of certain sizes. The modules
are weakly connected due to finite ramification, and the complete ordering oc-
curs because of random fluctuations. When nearly all modules of a given size
are ordered, the ordering at the next hierarchical level starts, with a longer
time scale. The ordering due to random fluctuations produces an exponential
decay of average number of interfaces, and repeating the process in following
scales produces the power-law overall behavior. The effect is less visible for
smaller pattern sizes, since modules in such case are smaller and connected
relatively stronger. Additionally oscillations have shorter period, making them
even less visible.

We have measured the exponent α of the power-law for all investigated lattices,
and compare it to the theoretical value [8] (Eq.1). It is worth to remind that the
theoretical values are only reference points, and were not originally calculated
for fractal structures.
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Fig. 6. Theoretical and experimental exponents for the ordering processes in func-
tion of fractal dimension. The line is the analytic formula (Eq.1), the squares are
exponents for SC networks with infinite ramification, the triangle is exponent for
SG network, the diamonds are exponents for SC networks with finite ramification,
the circle in the left upper corner is the exponent for the one-dimensional network.
Error bars are smaller than symbol sizes. Exact values and additional data can be
found in Table 1.

We also measured the dependence of the ordering exponents on the fractal
size. Simulations for SC fractals of different sizes has been performed in finite
and infinite ramification cases.

The ordering exponent is clearly dependant on the fractal size, at least for the
fractals with infinite ramification (Fig.7). The lack of such a strong dependence
for finite ramification fractals shows that the dynamics in these two cases
are different. Additionally, one can see that for larger fractals, the ordering
exponents tend to close to the analytical formulas (Eq.1), especially for infinite
ramification networks. We do not know what are the infinite size limits of the
ordering exponents for these fractals, and whether they would converge to
analytical predictions or not.

4 Conclusions

The results we have obtained show that the ordering of voter model in frac-
tals is described by a power law, similarly to regular networks below critical
dimension D = 2. The dynamics is different though, and analytic calculations
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type ramification level pattern size dimension αexp

SC infinite 2 3 64 1.8928 0.3094 ± 0.0077

SC infinite 3 3 512 1.8928 0.2755 ± 0.0017

SC infinite 4 3 4096 1.8928 0.2263 ± 0.0014

SC infinite 5 3 32768 1.8928 0.1908 ± 0.0007

SC 4 2 3 36 1.6309 0.2563 ± 0.0075

SC 4 3 3 216 1.6309 0.4055 ± 0.0028

SC 4 4 3 1296 1.6309 0.3909 ± 0.0033

SC 4 5 3 7776 1.6309 0.3763 ± 0.0008

SC 4 6 3 46656 1.6309 0.3717 ± 0.0016

Table 2
Measured exponents α for ordering processes in fractals of various size. The results
are averaged over 100 individual simulations, except for level 6 fractal data that was
averaged only over 10 individual simulations. The pattern column shows the linear
size of the pattern used in carpet creation.
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Fig. 7. The exponents for the ordering processes in SC fractals of various sizes. The
squares are for infinite ramification and D ≈ 1.8928, the diamonds are for finite
ramification and D ≈ 1.6309. Exact values and additional data can be found in
Table 2.
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[8] (Eq.1) for regular networks do not give correct exponents if simply applied
to fractal lattices (Fig.6).
The ordering process strongly depends whether the fractal has finite or infinite
ramification. For fractals with infinite ramification, the ordering is similar to
regular lattice and is determined by recurrence properties of the random walk
[7]. In finite ramification fractals the dynamics are different and the ordering is
driven by complete ordering of weakly connected modules in following scales.
Additionally the results further confirm the known fact, that for fractal struc-
tures the dimension alone does not determine dynamics in such systems [3,6].

This work was partially supported by a EU Grant Measuring and Modelling

Complex Networks Across Domains (MMCOMNET) and by State Committee
for Scientific Research in Poland (Grant No. 1P03B04727).
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