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An experimental setup has been designed that makes possible a real-time noise reduction and an increase
of automatic word recognition rate. The applied algorithm uses a dynamical filtering method for investigated
time-series and has been implemented in Spartan 3 FPGA evaluation board RC10 made by Celoxica. We show
that our approach increases the number of correctly recognized words in the commercial speech recognition
program ViaVoice 10.

PACS numbers: 05.45.Tp, 43.72.Dv, 43.50.Ki, 43.72.Ne

1. Introduction

Signals recorded by microphone are subjected to noise.
There are several possible origins of this effect. The noise
source can be due to the weak quality of the devices
used to record (microphone, sound card, etc.). The sec-
ond source of noise can be the environment surrounding
the speaker, e.g. cars, working computers or other elec-
tronic devices. In the case of standard conditions of mi-
crophone, sound card and surrounding environment, the
noise level can be about 40–50 dB (7–8 bits in a 16-bit
recording). The character of the noise depends on the
noise source. The microphone and the sound card pro-
duce rather high-frequency uncorrelated noise, but noise
coming from the surroundings is usually more or less cor-
related. A method for removing the colored noise from
a signal should depend also on the class of signal itself.
If the signal’s main frequency is much higher than the
frequency of the colored noise, then the noise reduction
(NR) is possible in some extent. However in the case
of voice signal the spectrum of pitch frequency is very
broad, so removing the colored noise is very difficult or
even impossible. In fact, even a partial solution of this
problem is demanding. In our approach we will try to
remove high frequency uncorrelated noise with the help
of a microprocessor that is operating in real time.

There are several methods of noise subtraction. Com-
mon solutions are linear filters; however one may also
use nonlinear or hybrid filters. Among the linear filters
the most popular is a low pass filter which is based on
fast Fourier transform (FFT). An alternative for FFT is
a simple time averaging method which also removes high
frequency components but is not as precise as FFT in the
Fourier space. In this paper we consider an algorithm be-
longing to the second class of noise suppression methods.
We will show that our algorithm, described further as
dynamical filtering, is able to denoise a recorded human

voice signal so that the recognition rate of a commercial
speech recognition program is enhanced. Hence, we use
a corresponding quantifier for the rate of NR in human
voice as it is described in Ref. [1]. We also verify that
NR algorithms can help computers to enhance their in-
telligibility. This latter aspect is highly important, since
every NR algorithm distorts the signal by removing noise.
Hence enlarging the signal-to-noise ratio does not guaran-
tee that a speech recognition program really understands
the signal meaning better.

Nonlinear NR methods became a prominent issue
about 15 years ago [2–12]. Since the analysis of chaotic
data in terms of dimensions, entropies and Lyapunov
exponents requires access to small length scales (small
scale fluctuations of the signal), a moderate amount of
measurement noise on data is already known to be de-
structive. On the other hand, a deterministic source of
a signal, albeit potentially chaotic, supplies redundancy
which enables one to distinguish between signal and noise
and eventually to remove the latter to some extent. NR
schemes which exploit such dynamical constraints were
proposed in [2–12] and were tested for many data sets.

For our purposes more interesting are linear filters [13]
which were discovered much earlier. The low pass fil-
ter based on Fourier transformation should suppress the
power in a high frequency range in Fourier space in order
to smooth the signal. A simpler case of such a filter is
just averaging in space and the drawback is an additional
artificial frequency which appears after the NR (the fre-
quency is related to the number of average data).

In the next two sections we introduce basic definitions
and compare features of different noise-reduction algo-
rithms. Then we briefly recall our algorithm, includ-
ing its adaptation for the treatment of voice data that
are nonstationary limit cycle-like signals with embedded
noisy segments (stemming from the fricatives). Then
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we demonstrate results from our algorithm including the
analysis in Fourier space. At the end we present conclu-
sions from our studies and suggest a possibility for future
modifications.

2. Basic definitions

The level of noise is usually measured in dB. If a clean
signal is x̃(t), and an observed time series polluted by
noise is x(t), then the noise level is defined as the loga-
rithm of the ratio of the signal power to the noise power,
i.e.

N = 20 log10




〈
x(t)2

〉
〈
[x(t)− x̃(t)]2

〉

 , (1)

where 〈.〉 indicates the time average. Here we do not in-
troduce a parameter of gain reduction because it would
be rather meaningless and very difficult. The micropro-
cessor changes the level of the signal amplitude so it could
be not compared between the different types of reduction.
In Table we recall the main features among different types
of reduction schemes. For our purposes the most impor-
tant are the second and third columns related to linear
and dynamical filters, since both filters are compared in
our studies. The nonlinear filters are much more com-
plicated and at present it is not possible to implement
them in the simple microprocessor that we tested in our
experiments. We used Celoxica RC10 evaluation board
equipped with a Xilinx XC2S1500 fpga, which is rather
limited, and only less complicated formulae may be im-
plemented.

TABLE
Comparison features of linear methods, dynamical filters, LP methods and hybrid methods.

Methods/Concepts Linear filters
(e.g. low pass filter)

Dynamical filters Nonlinear methods
(e.g. GHKSS)

Hybrid methods
(e.g. LPNCF)

finding
neighbours

in time in time in Fourier space in time and
in Fourier space

finding
corrections

smoothing
in time

smoothing in
time changing
according to the
main frequency

smoothing in
phase space

smoothing using
the information
in time
and in space

noise
estimation

in Fourier space in Fourier space violation of
constraints in
phase space

violation of
constraints in time
and in Fourier space

3. Methods used for speech signal processing

We present in this section some of the methods used
for signal filtering. We need to stress, however, that the
complexity of these methods is much too high for the
microprocessor used in this study, so we cannot directly
compare them to our approach tested with the micropro-
cessor.

3.1. Linear filter

The most popular linear filter is the Wiener filter. It
can be described as follows. If Ssignal

k is the amplitude of
Fourier transform of the noisy signal, then due to addi-
tivity and independence of the noise and signal we have(

Ssignal
k

)2

=
(
Snoise

k

)
+

(
Sclean

k

)2
. (2)

The action of the optimal linear filter for white noise
consists in rescaling the amplitudes of the signal in the
Fourier space of the signal by the use of noise variance σ:

Safter
k = Ssignal

k




(
Ssignal

k

)2

− σ2

(
Ssignal

k

)2


 . (3)

The inverse Fourier transform for the corrected ampli-
tudes Safter

k keeps phases of the Fourier components of
the noisy signal and yields the new signal in the time
space. One can prove that such an algorithm is the opti-
mal linear method of NR [13] if the exact value of noise
level σ is known.

3.2. Nonlinear methods

The GHKSS method is a version of the local projective
(LP) [1, 5–10, 12] method that was developed for chaotic
signals corrupted by noise. Assuming that the clean data
is confined to some deterministic attractor in a recon-
structed state space, which itself is locally a subset of a
smooth manifold, the method aims at identifying this lo-
cal manifold in linear approximation and projecting the
noisy state vector (which due to noise is not confined
to this hyperplane) onto the local manifold. Algorith-
mically, this means identifying a neighbourhood in the
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delay embedding space and performing a singular value
decomposition of a particular covariance matrix. Some
refinements are described in [10].

The LPNCF method, which was particularly devel-
oped for chaotic flows, makes use of nonlinear constraints
which appear because of the time continuous character
of the flow. These constraints are functionals of the state
vectors, which vanish for dense sampling of deterministic
data. Let {xi} for i = 1, 2, . . . , N be the time series.
We denote the corresponding clean signal by {x̃i}, so
for the measurement noise {ηi} we have xi = x̃i + ηi

where i = 1, 2, . . . , N . We define the time delay vectors
xi = (xi, xi−1, . . . , xi−(d−1)) as our points in the recon-
structed phase space. Then we choose two neighbours
xk, xj ∈ XNN

n of the vector xn (XNN
n is the set neigh-

bours of the point xn). Let us introduce the following
function [12]:

Gn(s) = xn−s(xk+1−s − xj+1−s)

+xk−s(xj+1−s − xn+1−s)

+xj−s(xn+1−s − xk+1−s) (4)
for s = 0, 1, . . . , d− 1.

The function Gn(s) vanishes for clean one-dimensional
systems, since we can eliminate auxiliary parameters a
and b from appearing in the following equations:

x̃k+1 = ax̃k + b. (5)
In the case of higher dimensional systems the function

Gn(s) does not always vanish, but it does alter slowly in
time for dense sampling.

One can check that for a highly sampled clean dy-
namic, the following constraint can be introduced:

Cq
n =

q−1∑

k=0

(−1)2Gn(k) ≈ 0

l =

{
0 if k = 0,

k +
∑int(log2(k))

s=1 int
(

k
2s

)
if k > 0,

(6)

where int(z) is an integer part of z and log2(z) is a log-
arithm with a base 2 of z. Similarly to LP methods, the
constraints (6) are satisfied in this approach by applica-
tion of the method of Lagrange multipliers to an appro-
priate cost function. Since we expect that corrections
to noisy data should be as small as possible, the cost
function is assumed to be the sum of squared corrections
S =

∑N
s=1(δxs)2, where δxn are the corrections of the

NR method connected to xn, such that the resulting time
series of the NR method yn is defined as yn = xn + δxn

(n = 1, 2, . . . , N). The method is a compromise between
time and space integration methods. The introduced con-
straints include neighbours in space together with their
pre-images, and it works on a time lag of unity in the
embedding space in order to exploit the flow-like struc-
ture of the data. Hence it combines spatial and temporal
vicinity (see Table). It can perform better than standard
time averaging or standard LP methods, because the size
of the neighbourhood in time and in space is smaller in

the LPNCF method than in standard methods which use
only time or space averaging.

4. Description of the algorithm

It is known that the voice signal for most of time has
many similarities to a flow [1, 14, 15], which means that it
represents smooth anharmonic oscillations with a typical
frequency around the speaker’s pitch of a few hundreds
Hz. However, articulated human voice is a concatena-
tion of different phonemes, so that the frequency, ampli-
tude and, most importantly, the wave form of the oscilla-
tion various tremendously on time scales of about 50 to
200 ms, causing the signal to be highly nonstationary.

Our method is based on a simple averaging process, but
in contrast to low pass filter the average scale depends on
the pitch frequency of the signal itself. The selected aver-
aging period is simply 1 over 120 times pitch frequency,
while the pitch frequency is calculated using signal co-
variances. Human speech appears as a result of periodic
behavior of parts of the signal, which is repeated a few
tens of times. One can recognize the main frequency that
is the pitch frequency. A rapid change of the oscillation
period usually means the end of the vowel, consonant or
syllable. With the help of our algorithm we try to catch
this dominant frequency and set the averaging period.

The recognition program is based on the Fourier trans-
form. It tries to find signals in its own databank scheme
in the Fourier space for the closest word to the current
signal. The recognition program also takes into account
the high frequency domain. This is more evident espe-
cially for signals from noisy letters like “s”, “th”, etc. The
NR algorithm has to be very careful with the chosen level
of averaging and should not destroy the high frequency
voice signal. To have a better result, we tried to reduce
every syllable separately. We found the optimal number
of points in the averaging process to be T/120, where T
is the inverse of pitch frequency.

The programming of the microprocessor is different
from high level software, as C or C++. The most im-
portant difference is that the microprocessor uses only
integers, while floating numbers are forbidden. The
second important difference is that the microprocessor
can perform parallel tasks. The third point is that
the programmer should use bit operations on numbers
rather than standard operations and functions. These
restrictions make the programming of the microproces-
sor much harder, and developing even a simple code can
be difficult.

In Fig. 1 we show the global scheme of the micropro-
cessor computations. The scheme consists of four parts
which work in parallel. The microprocessor takes data,
calculates the averaging period, averages and writes the
reduced signal to headphones entry, all at the same time.
All tasks are synchronized with signal sampling (22 kHz).
Here the averaging means a simple arithmetic mean value
for a given period. The important part of the calculations
is hidden in the second square — the estimation of pitch



122 K. Urbanowicz, P. Fronczak, J.A. Hołyst

Fig. 1. Scheme of parallel computing in the micropro-
cessor.

Fig. 2. Calculations of the pitch frequency of the
sample with the help of covariance.

frequency. We present the method of finding the fre-
quency in Fig. 2. The frequency is simply the inverse of
the time span of the unchanged pitch (the time between
repetitions). As we see in the scheme, there are many
constant parameters which come out of the experimen-
tal optimization for characteristic features of the human
voice. Here we recall once more that for microprocessors
one can use only integer numbers. The frequency find-
ing algorithm is done in a loop. This loop is within a
higher level loop, which is based on frequency and tries
to catch the end of the syllable in the rapid change of this
frequency. The outer loop is shown in Fig. 3. Looking
closely at Fig. 3 we see that if the parameter PerF (an
average of Per) is changing rapidly, then we break the
loop and return to the end of the syllable and frequency.
Calculations of covariance and variance are presented in
Eqs. (7) and (8):

Fig. 3. Calculation of the beginning and end of a
syllable.

Corr =
1

256

256∑

i=1,2,...

xixi+tau, (7)

Var =
1

256

1024∑

i=1,5,...

xixi, (8)

where xi is the value of voice amplitude at time i.
One more important point in Fig. 2 is the problem

with silence (pause) periods, which is solved as follows.
The condition if (Corr > CorrM/2 && tau > 150 &&
CorrM ∗ 100 < Var ∗ 16) detects silence periods. If the
algorithm recognizes no voice in the signal, then it sets
the frequency to the lowest value, so the period of re-
duction will be maximal and the whole noise will be re-
moved. This seems to be an important feature of the
method, because the recognition algorithm is frequently
misled by the noise in the pause periods. The method
was described in detail in the paper [1], and here we in-
troduced the changes needed to adopt the algorithm to
microprocessor properties.

5. Results

The results were obtained with the experimental setup
shown in Fig. 4. The voice was played back from files so
one could repeat the recognition procedure for different
parameters of reduction. We performed the recognition
for the following cases: no noise reduction, reduction by
a standard method (low pass filter) and reduction by the
method described above — dynamic filtering. We re-
peated the recognition four times for every case in order
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Fig. 4. Scheme of experiment setup of reduction of
signal with voice.

Fig. 5. Plots of intelligibility. At the Y -axis, the num-
ber of letters similar to (top) and different from (bot-
tom) the original clean text versus level of distortion is
shown. SD stands for standard deviation. The graphs
shift to the right when a proper reduction is applied,
which means that intelligibility is enhanced.

to average the results. The standard method is equiva-
lent to simple time averaging. Here we performed aver-
aging with three points which we found optimal for this
type of reduction and it is the average number of data
taken for our method. As mentioned above, our method
reduces the noise dynamically, which means that it fits
dynamically the number of data for signal averaging. In
the case of our experimental setup the average ranges
from 1 to 7 and it depends on characteristic frequency,
which is detected by the method. The number of taken
data to average suggests that we are dealing with high
frequency noise which can be partially reduced by aver-
aging of a few data. Figure 5 presents the main results in

Fig. 6. The time series corresponding to the low fre-
quency signal of the beginning of word “München”.

the case of recognition. The intelligibility of the signal is
estimated using two values: the number of correctly rec-
ognized letters and the number differences between the
cleaned signal and the original text, which is known a
priori. As one can see the signal converted by the mi-
croprocessor but not cleaned leads to the worst results:
there are the largest differences and the smallest simi-
larities between the system output and the original text.
When we use a standard method of NR (low pass filter)
the intelligibility is better than for the uncleaned signal
and the observed shift of plot to the right means that the
signal is recognized for larger noise. In our test we used a
clean signal with standard deviation 0.02355. In the case
of no NR the recognition program is completely misled,
for a noise standard deviation SD = 0.005 (26.92 dB),
while for the simple reduction the threshold is shifted
to SD = 0.006 (23.75 dB). Our method of NR makes the
signal even more readable to the computer, and the noise
threshold is shifted to SD = 0.007 (21.07 dB). This means
that the computer can recognize the signal if the noise
standard deviation is smaller than 0.007. The recogni-
tion program is fully misled for higher values of noise,
which is represented on the plots by the horizontal line,
without substantial changes of recognition for increasing
noise intensity. Let us stress that Figs. 5 and 6 cannot
be generated by simple inverting, since the speech recog-
nition program ViaVoice [16] can add additional words
to the text, for example when the end of a line should
occur. This is due to the fact that this program recov-
ers whole words from the signal, so number of letters is
not preserved and it is rather increased when the voice
distortion is larger.

In order to look deeper into properties of considered
time series we calculated and compared power spectra
of different types of signal for various reduction meth-
ods. Since the speech recognition program is based on
FFT calculations and the comparison in Fourier space is
more appropriate for this case, we took two sample sig-
nals with extreme values of main frequency. One signal
possesses a main period length equal to 509 data points
for the case of 32 kHz sampling (low frequency signal,
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Fig. 7. The time series corresponding to high fre-
quency signal of the noisy letter “ch” in the word
“München”.

Fig. 8. The power spectrum of clean low frequency
signal.

f = 62 Hz) and it corresponds to the beginning of the
word “München” (see Fig. 6). The second sample has
a main period length equal to 22 data points (high fre-
quency signal, f = 1.45 kHz) and it is the noisy letter “ch”
in the same word (see Fig. 7). We applied two types of
NR to the above signals: standard filtering and dynamic.

Fig. 9. The power spectrum of clean high frequency
signal.

Fig. 10. The power spectrum of noisy low frequency
signal without reduction.

Fig. 11. The power spectrum of noisy low frequency
signal with standard filtering.

We also considered the signal with no NR (we used a
noise with a standard deviation SD = 0.005) and a clean
signal. In Figs. 8 and 9 we present the power spectrum of
clean signal for low and high frequency data, respectively.
The difference between these figures is understandable —
more power in high frequencies is present for the second

Fig. 12. The power spectrum of noisy low frequency
signal with dynamic filtering.
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Fig. 13. The power spectrum of noisy high frequency
signal without reduction.

Fig. 14. The power spectrum of noisy high frequency
signal after standard filtering.

picture. Figures 10, 11 and 12 compare effects of the
standard filtering and the dynamic one for the case of
low frequency signal. For recognition purposes we would
like to smooth the signal much more than for high fre-
quency. The comparison from the beginning of the power
spectrum till 0.13 brings more similarities to Fig. 11 and
Fig. 12, so dynamic filtering behaves like standard fil-
tering and substantially reduces the noise. The shape

Fig. 15. The power spectrum of noisy high frequency
signal after dynamic filtering.

of the power spectrum is smoother and the details van-
ish. In Figs. 13, 14, and 15 we compare the effects of
standard filtering and dynamic filtering for the case of
high frequency signal. In this case the power spectrum
of the signal after the dynamic filtering is more similar
to the case of the signal without NR (Fig. 15 is similar to
Fig. 13). Details in the power spectrum are preserved so
the speech recognition program is not substantially mis-
led. It follows that the dynamic filtering changes the level
of averaging in order to preserve important details in the
power spectrum for the speech recognition algorithm.

6. Conclusions and further discussion

In this paper we describe an experiment in NR using a
method of dynamic filtering and Spartan 3 FPGA eval-
uation board RC10 made by Celoxica. The experiment
showed that the proposed NR method enhances the pos-
sibility of word recognition and amplifies the possibility
of communication with computers. A commercial pro-
gram for speech recognition, ViaVoice 10 (German ver-
sion), was used to recover an original text from noisy sig-
nals. A microprocessor was placed between the speaker
and the ViaVoice module and it performed an on-line
high frequency noise suppression. The system intelligi-
bility increases after application of our algorithm. We
also present a detailed analysis of signal properties in the
Fourier space that explains why the method works.

Although the experiment was successful, it is only the
first step toward real applications. One should regard
more complex methods of NR in order to remove noise
without signal distortion at the same time. One should
think also about a closer integration of the NR method
with speech recognition programs in order to fully utilize
the power of synergies. Further work should focus on
a faster microprocessor with built-in mathematical func-
tions that would make possible incorporating more com-
plex algorithms. Our dynamic filtering, which was rather
a simple code in the world of high level programming,
used almost 90% of our microprocessor memory.
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