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Transition due to preferential cluster growth of collective emotions in online communities
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We consider a preferential cluster growth in a stochastic model describing the dynamics of a binary Markov
chain with an additional long-range memory. The model is driven by data describing emotional patterns observed
in online community discussions with binary states corresponding to emotional valences. Numerical simulations
and approximate analytical calculations show that the pattern of frequencies depends on a preference exponent
related to the memory strength in our model. For low values of this exponent in the majority of simulated
discussion threads both emotions are observed with similar frequencies. When the exponent increases an ordered
phase emerges in the majority of threads, i.e., only one emotion is represented from a certain moment. Similar
changes are observed with increase of a single-step Markov memory value. The transition becomes discontinuous
in the thermodynamical limit when discussions are infinitely long and even an infinitely small preference exponent
leads to ordered behavior in each discussion thread. Numerical simulations are in a good agreement with the
approximated analytical formula. The model resembles a dynamical phase transition observed in other Markov
models with a long memory where persistent dynamics follows from a transition to a superdiffusion phase. The
ordered patterns predicted by our model have been found in the Blog06 dataset although their number is limited
by fluctuations and sentiment classification errors.
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I. INTRODUCTION

It is well known (see, e.g., Ref. [1]) that a one-dimensional
(1D) system with short-range forces cannot undergo a phase
transition at a nonzero temperature. The situation changes
when the interaction range increases, e.g., the Ising chain
displays a second-order phase transition when spin interactions
decay with the distance r as r−(1+σ ) for σ < 1 and nonstandard
critical exponents are observed for 0.5 < σ < 1 [2]. Another
example is the 1D long-range q-states Potts model, where
depending on the σ exponent and q parameter, a first-order or
a second-order phase transition is possible [3].

Some properties of 1D spatial systems with long-range
interactions can be mapped to N -step (long memory) Markov
chains, where transitional probabilities depend on the system
history and the spatial variable corresponds to the time
axis. Analytical and numerical solutions for the resulting
time-dependent probability distributions were presented in
Refs. [4,5] for fixed values of time horizon N . The formalism
was extended [6,7] to an infinite-range memory that covers
the whole history of a 1D random walker. In such a case,
a dynamical phase transition takes place between normal
diffusion and superdiffusive behavior. When the parameter
describing the influence of memory is small enough, the
variance DL of a walker position scales with the walking
time L as DL ∼ L. It increases however as DL ∼ Lκ , κ > 1
when the memory influence parameter crosses a critical value.
The results can explain a persistent behavior of coarse-grained
DNA sequences, written texts, and financial data [6].

In this work, we consider a stochastic model of preferential
cluster growth where a special form of long-memory dynamics
results from recent observations of emotional patterns in
discussions in online communities [8–13]. In fact, complex
phenomena taking place during information search and com-
munication exchange over the internet have been investigated
by several authors and diverse methods of statistical physics,

see, e.g., Refs. [14–20]. The studies are facilitated by an
easy access to massive data sources [21,22]. Diffusion of
information and opinion in online communities is frequently
compared to epidemiological phenomena [23–29]. However,
both processes need separate approaches, as shown, e.g., in
recent investigations [30,31] of social contagion in online
social networks that emerged during political protests in Spain.

Our model is based on a special collective phenomenon
of emotional interactions reported in Ref. [11]. Consecutive
comments posted on blogs, the BBC Forum, IRC channels,
and the Digg website when represented by binary variables
corresponding to posts’ emotional valences [32–34] tend to
group in clusters of a similar valence and the cluster growth
rate can be well described by a sublinear preferential rule [11].
It follows that a negative comment is more likely to be posted
after a sequence of five negative messages rather than after
four such posts. The persistent dynamics of this system has
been confirmed by the Hurst exponent analysis [10]. The aim
of this paper is to study the statistical behavior of this system
when affective interactions are strong and long clusters are
present. In particular we will investigate situations when in a
given course of time the process of preferential cluster growth
leads to the emergence of a critical cluster followed by posts
always displaying the same valence, and secondly, what is a
fraction of such an ordered phase in all posts.

This paper is organized as follows. In Sec. II we describe
observations of emotional clusters in massive data sets, in
Sec. III we define a data-driven model for posts’ appearance,
and in Sec. IV we present numerical simulations showing a
transition between a mostly disordered (hetero-emotional) and
a mostly ordered (mono-emotional) phase in a two-state case
of such a model. The model extension to a three-state system is
studied in Sec. V. In Sec. VI we analyze data sets from selected
online communities in order to demonstrate the presence of a
mono-emotional phase.
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II. PREFERENTIAL GROWTH OF EMOTIONAL
CLUSTERS IN REAL DATA

In accordance with the behavior found in several online
communities (BBC Forum [35,36], Digg, IRC, Blog06) and
presented in Refs. [11,13], the preferential growth mechanism
is the main process responsible for forming emotional clusters.
The process is manifested by the power-law formula for
the conditional probability p(e|ne) that after n comments
with the same emotion e [32–34] the next comment will
express a similar sentiment. The data (see Fig. 1) reveals the
relation p(e|ne) = p(e|e)nα where p(e|e) is the conditional
probability that two consecutive messages have the same
emotion e = −1,0,1 (negative, neutral, positive); p(e|e) is
defined by p(e|e) = p(ee)/p(e), where p(ee) is the joint
probability of the pair ee that is measured as a number of
occurrences of the two consecutive messages with the same
valence e divided by the number of all appearing pairs. Here
p(e) is the probability of a given emotion e measured as
the number of comments with the valence e divided by the
total number of comments in the considered data. For the
description of automatic sentiment analysis applied to the data
retrieval see Refs. [11,37–39]. The characteristic exponent α

represents the strength of the preferential process leading to a
long-range attraction between posts of the same emotion. The
probability of finding the cluster of size n is proportional to
the factor C = p(e)p(e|e)n−1[(n − 1)!]α responsible for the
appearance of the sequence of n consecutive messages. It
should be also taken into account that the cluster of size n is
defined as exactly n posts with mono-emotional expressions.

III. MODEL DESCRIPTION

Here we try to simulate the process of preferential cluster
growth in an artificial environment. To make the problem
simpler for further analytical investigations, we shall usually

FIG. 1. (Color online) The conditional probability p(e|ne) of the
next comment occurring with the same emotion e for Digg, BBC,
blogs, and IRC data [11,13]. Symbols are data (blue triangles, red
circles, and white squares, for negative, positive, and neutral clusters,
respectively), and lines represent the fit to the preferential attraction
relation p(e|ne) = p(e|e)nα . Values of p(e|e) and α are shown in
Table I.

consider a two-state system where only positive e = 1 or
negative e = −1 messages can appear in such an artificial
discussion. In Sec. V we will show that the behavior of a
three-state model is similar. Each thread has the same length
L, unlike in real data, where the thread distribution was close
to a power-law function (see Supporting Material in Refs. [11]
and [13]).

The evolution rules of this two-state system are as follows.
(i) the emotion in the first message is randomly chosen

with even probabilities p(e = 1) = p(e = −1) = 1/2.

(ii) the probability of emotion e in the next message is
dependent on the discussion history. Information about this
history is coded in size n of a recently observed emotional
cluster. The cluster of size n is defined as a subchain of length
n of consecutive states with the same values as the valences
e [11].

(iii) The process of the cluster growth is based on the
behavior observed in real data. The conditional probability
that a cluster containing n consecutive messages with the same
valence e increases its length to n + 1 is given by the equation

p(e|ne) = xen
αe , (1)

where xe is a constant that can depend on the cluster valency
e. It amplifies the cluster growth rate and equals to a one-step
memory parameter p(e|e) that can be calculated from real data.
Usually we will disregard the dependence xe on the valence
e and use a valence independent value x for simulations and
analytical calculations. The exponent αe, where 0 < αe < 1
describes a strength of preferential interactions for the emotion
e as it was described in Sec. II. In the numerical simulations
of emotional patterns in each time step we randomly choose
a value between [0; 1]. If it is smaller than p(e|ne), then the
cluster of the emotion e is continued; otherwise, the cluster is
terminated, and the opposite emotion (−e) appears.

(iv) if p(e|ne) = 1, then the cluster reaches its critical
size nc,

ne
c = (xe)−1/αe , (2)

which means that from this moment on the discussion will be
permanently ordered and that all following messages in this
thread will possess the same emotional valence e.

Since the critical cluster usually does not start in the
beginning of a thread, a characteristic time Tc can be thus
defined when the cluster reaches its critical length nc. In
numerical simulations we shall use the 〈Tc〉 as the average over
R realizations (threads); in almost all cases we take R = 104.

IV. TWO-STATE SYSTEM

Unless otherwise stated we consider the simplest case
x = x1 = x−1 = 0.5 and α−1 = α1 = α. The probabilities of
the appearance of both emotions when calculated in an
unordered phase (before the critical cluster occurrence) are
the same p(−1) = p(1) = 0.5, and the distribution of the
observed cluster lengths is very similar to the one observed
in real data.

After transition time Tc, i.e., when the critical cluster
appears, the discussion changes into a mono-emotional thread
(MET). Starting here, the probabilities p(−1) and p(1) become
0 and 1 (or 1 and 0). This means that half of the threads is nearly
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FIG. 2. (Color online) Left: time Tc needed for the emergence of the critical cluster for x = 0.5, L = 107. Right: size of critical cluster as
a function of α for x = 0.66 (sky blue), x = 0.5 (black), and x = 0.33 (orange) (from bottom to top).

all positive, and the other half nearly all negative (if the threads
are long enough). It is obvious that the average critical time
〈Tc〉 should depend on the strength of emotional interactions,
i.e., on the exponent α. It is also obvious that 〈Tc〉 has to be
larger or equal to the critical size of the cluster 〈Tc〉 � nc (see
Fig. 2). Values of 〈Tc〉 are received from numerical simulations
and nc from Eq. (1).

Since in some threads the critical cluster is not observed
at all, 〈Tc〉 is not an appropriate observable, and a more
convenient measure is a mean inverse of the critical time

〈λ(x,α)〉 = 1

R̃

i=R̃∑
i=1

1

T i
c

, (3)

where R̃ is the number of threads that were ordered during the
simulation, which means that their critical times were smaller
than the thread’s length. In Fig. 3 we present a relation between
〈λ〉 and α. The left plot is presented in the linear scale and
clearly displays the staircase shape of this dependence that
follows from the integer values of Tc (compare Fig. 2). The
right plot presents in the log-linear scale a rapid decrease in
〈λ〉 for α ≈ 0.15. The multisteps shape for α > 0.3 and a
rapid decrease observed for 0.13 < α < 0.2 are only weakly
dependent on the system size L. We tested this behavior for
different values of L; for clarity, we show only representative

simulations for L = 106, L = 2 × 107, and L = 5 × 107. Of
course, the length of the thread L influences the value α when
the order is observed for the first time in our ensemble of
R = 10000 samples. It is α = 0.13 for a system of the size
L = 5 × 107 and α = 0.15 when L = 103.

Since parameter 〈λ〉 is the average 〈1/Tc〉 it thus equals to a
probability that a comment is at the end of the critical cluster.
On the other hand, the probability of finding the critical cluster
can be obtained from a distribution of cluster sizes

P (n) = A(x,α)xn[(n − 1)!]α, (4)

that is similar to a relation presented in [11]. It follows

〈λ(x,α)〉 = P (nc), (5)

where nc is given by Eq. (2).
The inverse of normalization constant in Eq. (4)

A(x,α) =
[

n=nc∑
n=1

xn[(n − 1)!]α
]−1

(6)

was calculated numerically and is presented in Fig. 4. A
compact analytical approximation for this constant can be
received when α = 0 and x < 1. Then we get

A(x,α) ≈ [x/(1 − x)]−1. (7)
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FIG. 3. (Color online) Relation between the inverse of the critical time 〈λ〉 and the exponent of affective interactions α for x = 0.5 for
different values of discussions lengths L. Red circles: L = 107, blue squares: L = 2 × 107, sky blue triangles: L = 5 × 107. Black circles
follow from Eq. (8) and are very close to the red line from Eq. (10).
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FIG. 4. Values of 1/A(α) estimated for x = 0.5 using MATHE-
MATICA.

In fact for x = 1/2 the above approximation gives A = 1,

which is not very far away from exact numerical values
presented at Fig. 4 especially when α � 1.

After using Eq. (2) in Eq. (4) we get from Eq. (5)

〈λ(x,α)〉 = A(x,α)xx−1/α

[(x−1/α − 1)!]α (8)

that well fits the behavior of 〈λ(α)〉 received from numerical
simulations (see the right panel in Fig. 3). The value of
〈λ(α = 1)〉 can not be obtained from Eq. (8) but may be easily
calculated from a simple branching process as

〈λ(x = 0.5,α = 1)〉 = 2
n=nc∑
n=2

(
1

2

)n 1

n
= 2 ln 2 − 1 ≈ 0.386.

(9)
In the limit α � 1 Eq. (8) reduces to

〈λ(x,α)〉 ≈ (1 − x) exp(−αx−1/α) (10)

and we get 〈λ(x,0)〉 = 0
Let us consider discussions in an ensemble of threads

of length L with affective interactions described by the
characteristic exponent α and the parameter x and let us define
a fraction of discussions that are mono-emotionally ordered
from certain moments as r(α,x,L) = R̃

R
. This value is also

the probability of the MET occurrence before time t = L. It
follows the value of r can be written as

r(α,x,L) = 1 − [1 − λ(α,x)]L, (11)

where an explicit form can be received by inserting into
Eq. (11) results (7) and (8)

r(α,x,L) ≈ 1 − [1 − (1 − x) exp(−αx(−1/α))]L. (12)

Results of numerical simulations and Eq. (12) are presented
in Fig. 5. As one could expect, a fraction r of the MET phase
in all threads increases with the increase of α exponent and
thread length L. Moreover for longer threads the agreement
between Eq. (12) and numerical simulations is better and the
transition between the states r ≈ 0 and r ≈ 1 is steeper. In
the thermodynamical limit L → ∞ this transition becomes
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FIG. 5. (Color online) Fraction of ordered threads as a function
of the exponent α for various thread lengths L. Lines correspond to
Eq. (12).

discontinuous since

lim
L→∞

lim
α→0+

r(α,x,L) = 0 (13)

and

lim
L→∞

r(α > 0,x > 0,L) = 1. (14)

Let us define the characteristic value α∗ as a strength of
affective interactions for which we observed a half of ordered
realizations α∗ = α(r = 0.5). After a short algebra we get
from (12)

1 − (1 − x) exp[−α∗x(−1/α∗)] ≈ 2−(1/L). (15)

For the symmetrical case x = 1/2 and L 
 1 (unless other-
wise stated we use the same assumptions further in analytical
calculations) we get a simpler relation

α∗2(1/α∗) ≈ ln(L) − ln[2 ln(2)] (16)

that can be disentangled as

α∗ ≈ − ln(2)

W−1 {− ln(2)/ ln[L/ ln(4)]} , (17)

where W−1(.) is the lower branch of Lambert W function [40].
A quantitative measure of the system behavior near α∗ is the
slope

tan φ =
(

∂r(α,x,L)

∂α

)
α∗

(18)

that can be expressed as

tan φ ≈ − ln(2)

2
x−1/α∗

[
1 + ln(x)

α∗

]
. (19)

For x = 1/2 Eq. (19) can be written as an explicit function
of the length L using the result (17). Relations (17) and
(19) are presented at Fig. 6 where we see a good fit to
corresponding numerical simulations. In the limit L → ∞ the
value α∗(L) calculated from (17) tends to zero while the slope
φ(L) diverges to infinity, which is a sign of a discontinuous
transition in the thermodynamical limit. It should be stressed
that for α = 0 the MET phase does not exist, which is shown
in Eq. (13).
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FIG. 6. (Color online) Dependence of the critical value α∗ (violet
diamonds) and the slope of tan φ (red circles) on the system size L.
Solid line corresponds to Eq. (17) and a dashed one to Eq. (19) where
the value of α∗ was taken from Eq. (17).

Until now we were focused on the relation of the fraction
r of ordered realizations and the exponent α for a fixed
value of the parameter x corresponding to the system short
memory p(e|e) [see Eq. (1)]. Figure 7 shows the influence
of x parameter on the fraction r where we used the solution
Eq. (12). As it could be expected the increase of the short
memory makes the MET occurrence more probable. In the
thermodynamical limit L → ∞ we have a discontinuous
transition similar to that observed at Fig. 5. In fact we get
from Eq. (12)

lim
L→∞

lim
x→0+

r(α,x,L) = 0, (20)

which should be compared to Eq. (13) and Eq. (14).
To show the combined influence of parameters α and x

on the system dynamics we have presented the results of
simulations for pairs (x, α) fulfilling the condition r = 0.5
and solutions of Eq. (12) for different values of L (see Fig. 8).
There is a good agreement between numerical simulations and
the approximate analytical solution (12) especially for α � 1.
As we can see in Fig. 8 a large fraction of MET phase can
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FIG. 7. (Color online) Fraction of ordered threads as a function
of the parameter x with fixed value α = 0.2 for various thread lengths
L. Lines correspond to Eq. (12). A decay of the function r(α,x) for
x → 1− is an artifact following from Eq. (7).
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FIG. 8. (Color online) For each value of x we find a corresponding
value of α when half of realization are ordered, r = 0.5. Points
represent numerical simulations for different values L and lines
correspond to Eq. (12).

emerge only if both parameters α and x are high enough. For
x < 0.3 the parameter α needed to observe a half of ordered re-
alizations should be higher than 0.3 even for very long threads
L = 106.

Let us note that derivatives of fraction r in respect to α and
x can be considered as corresponding system susceptibilities.
A special case is presented by Eq. (19) where we see that
the susceptibility against the exponent α calculated at the
characteristic point α∗ tends to infinity in the thermodynamical
limit L → ∞. A similar divergence can be derived by
differentiating Eq. (12) against x and assuming the same
limit.

V. THREE-STATE SYSTEM

A natural extension of the two-state system is to add
one more state, i.e., e ∈ {−1,0,1}. To compare properties
of such systems with our previous results, we compare a
symmetrical three-state model where x−1 = x0 = x1 = 0.5
and α−1 = α0 = α1 with a symmetrical two-state model where
x−1 = x1 = 0.5 and α−1 = α1. Values of the inverse of critical
time 〈λ〉 as a function of the exponent α are presented in Fig. 9.
Since results for both systems follow the same line, we can
state that the number of possible emotional states does not
influence a critical time needed for the emergence of MET.
This observation can be explained as follows: the occurrence
of MET requires growth of a critical cluster of any emotion
e. The growth process is dependent only on the conditional
probability of cluster growth [Eq. (1)] that is insensitive to
the number of possible emotional states. If initial probabilities
p(e) of a spontaneous occurrence of every emotional state
e are equal and clusters of posts representing each emotion
possess identical growth parameters αe and xe then an average
time needed for the emergence of any critical cluster should
be independent from the number of possible emotional states.

Figure 10 shows the results for an asymmetrical three-state
system with x−1 = x0 = x1 = 0.33. We considered models
when one or two emotional states are random (α−1 = 0 or/and
α0 = 0) and the preferential process appears only for the
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FIG. 9. (Color online) Relation between the observable 〈λ〉 and
the exponent α; large black circles: two-state system with parameters
x−1 = x1 = 0.5, α−1 = α1 ; small red points: three-state system with
x−1 = x1 = x0 = 0.5 and α−1 = α1 = α0.

remaining emotional state. We observe that for a small value
of α < 0.25 all three considered curves collapsed.

VI. REAL-WORLD DATA

Here we compare theoretical predictions of the MET
phase emergence with data corresponding to various online
communities: BBC Forum [12,35,36], Digg [41], and Blog
[11]. BBC Forum data included discussions posted on the
Religion and Ethics and World/UK News message boards
starting from the launch of the website (July 2005 and June
2005 respectively) until June 2009. The Blog06 dataset is
a subset of the collection of blog posts from December 6,
2005 to February 21, 2006. Only posts attracting more than
100 comments were extracted, as these seemed to initiate
nontrivial discussions. The Digg dataset comprises a full crawl
of digg.com, one of the most popular social news websites.
The data spans February to April 2009 and consists of all the
stories, comments, and users that contributed to the site during
this period. The data was emotionally annotated by a sentiment
classifier, for details of its properties see Refs. [11,37–39,41].

One of differences between our model and real data is
the thread length distribution. In the simulation we analyzed

0.2 0.4 0.6 0.8 1
 α

10-9

10-6

10-3

100

< 
λ>

Three -state system α1=α  α-1=α  α0=0
Three - state system α1=α-1=α0=α
Three - state system α1=α α-1=0 α0=0

FIG. 10. (Color online) Relation between the observable 〈λ〉 and
the exponent α for asymmetrical three-state system for x = 0.33 and
different values of α; L = 2 × 106.

TABLE I. Values of model parameters fitted to real data sets
Blog06, BBC Forum, and Digg. α: exponent of preferential emotional
interactions. p(e|e): conditional probability of the appearance of two
consecutive messages with the same emotional values. nc: size of the
critical cluster (needed for MET emergence) predicted by the model.
nmax: the maximum cluster size found in data sets. md

th: the number
of threads containing the critical cluster in data sets. The last column
ms

th is the average number of threads with the critical cluster received
from numerical simulations on the real structure of the data, i.e., the
lengths of threads were acquired from the data with parameters α and
p(e|e). Simulations were repeated R = 1000 times for every thread.

α p(e|e) nc nmax md
th ms

th

Blog06+ 0.23 ± 0.01 0.45 33 51 4 26
Blog06− 0.19 ± 0.01 0.51 35 67 4 57
Blog060 0.16 ± 0.01 0.58 31 114 35 217
BBC+ 0.38 ± 0.02 0.27 32 25 0 2.08
BCC− 0.051 ± 0.005 0.69 1672 81 0 0
BBC0 0.45 ± 0.04 0.2 36 20 0 0.04
Digg+ 0.20 ± 0.01 0.37 115 22 0 0
Digg− 0.11 ± 0.01 0.56 195 46 0 0
Digg0 0.37 ± 0.04 0.27 35 33 0 0.001

systems with a fixed length L and various cases were tested
for L between L = 100 and L = 108. In real data sets the
thread length occurrence is described by specific distributions
as presented in Fig. 11. The maximum observed value of L

is around 103 for Digg and Blog06 and approximately 104

for BBC Forum, but those values appear only occasionally.
Generally the character of these distribution is close to a
power-law decay, thus, the majority of data comprises short
discussions.

In Table I, for three data sets we present the values of
exponents α (see Ref. [11]), one-step memory parameters
p(e|e), values of critical clusters nc following from Eq. (2)
and nmax, i.e., maximum sizes of clusters observed in real
data. The first step of our data analysis was to look for threads
containing a cluster larger than a critical one. Assuming that
only clusters appearing at the end of discussions can be treated
as examples of a MET phase in real data we have found
threads with nmax larger than nc only in Blog06 data (see
Table I).

The appearance of such clusters in Blog06 is in agreement
with the analysis presented in Fig. 12, where results of
simulations make up the colored background for real pairs
(x, α) displayed by various symbols. In case of data corre-
sponding to negative and neutral clusters in the BBC Forum,
and negative and positive clusters in Digg the length of the
system needed to statistically observe half of realizations with
MET is larger than L = 106. In real Digg data we do not find
discussions of such length thus the absence of MET phase
is not puzzling for this community. A similar situation takes
place in case of the neutral clusters in Digg and positive clusters
in BBC. Here one needs threads less than L = 106 but more
than 103. On the other hand for positive and negative clusters in
Blog06 the data points lie very close to L = 103 line, while for
neutral Blog06 clusters the system size necessary to find half
of the ordered threads is only slightly larger than 102. These
conditions are in a qualitative agreement with observations of
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FIG. 11. (Color online) Histograms of thread lengths L for BBC Forum, Blog06, and Digg (see Supporting Material in Ref. [11]).

the MET phase in this community. For Blog06 data we found
35 threads with neutral clusters larger than nc, negative clusters
larger than nc were found in four threads and positive clusters
appeared also in four threads.

In Blog06 data set we find threads containing two or three
clusters larger than nc in the same thread. It means that even
after the critical cluster emerged, hetero-emotional comments
may afterwards be posted. Such a behavior is not predicted
by our model, where after the mono-emotional cluster crosses
its critical size no other emotional state can be observed. To
explain this discrepancy let us point out that in case of real
data there exist fluctuations that might result from mistakes in
the classification algorithm [41,42], and also from a random

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9x
0

0.1

0.2

0.3

0.4

0.5

 α

FIG. 12. (Color online) Comparison of conditions for the MET
phase emergence in the model and in real data. Results of numerical
simulations show pairs of parameters (x, α) for which a half of
simulated threads were ordered (r = 0.5) and they are displayed
by various colors for different threads lengths L. The white color
represents L > 106, the yellow 106 < L < 103, the orange 103 <

L < 102, and the green L < 102 (similar results can be found at
Fig. 8). Symbols present values (x, α) calculated from real data (see
Fig. 1 and Table I). BBC Forum is marked with the circles, Digg with
the squares, Blog06 with the triangles, the red color presents positive
emotions, the blue negative, and black is used for the neutral. In the
case of real data the parameter x was estimated as (p(e|e). The plot
suggests that the best conditions for the MET phase occurrence are
in the Blog06 data set.

emotional behavior of participants that is not provided for by
model.

The last column of Table I follows from numerical
simulations performed on the thread length distribution taken
from real data. The average number ms

th of threads with a
critical cluster obtained in this way is always larger than
the value observed in real data md

th. This discrepancy also
follows from fluctuations that are absent in our model. In
real data such fluctuations mean splitting of an emotionally
homogeneous state into two or more parts by one or a few
random messages with other emotional valence. If all separate
parts were shorter than nc our search algorithm did not detect
MET in a given thread and thus the number of detected MET
cases is lower. The effect of fluctuations is demonstrated in
Fig. 13. The left panel is an example of a clean MET, where at
the end of the discussion the users post only messages with a
mono-emotional expression. The right panel is an example of
a noisy MET where during the presumably mono-emotional
phase messages with different emotions randomly appear, or
at least are detected by the sentiment classifier. To quantify
this behavior, for every thread with a critical cluster, we define
a coefficient γ

γ = le

l
. (21)

Here le is a number of messages with a dominant emotional
state e (corresponding to the critical cluster) observed in the
part of the thread starting from the critical cluster, whereas l is
a number of all messages in this part of a thread. In other words
l = le + ld where ld is a number of messages with emotional
states different than e that were observed after the critical
cluster. Let us note that 1 − γ is a measure of a noise level.
Figure 14 presents values l and γ for all threads containing the
MET phase. Mean values of this ratio for clusters of various
emotions are 〈γ 〉+ = 0.874, 〈γ 〉− = 0.932, and 〈γ 〉0 = 0.969.
It means that for a vast majority of threads the critical cluster
was located close to the discussion end and not many posts
expressing other emotions following critical clusters were
observed.

Let us assume that the calculated ratio 〈γ 〉e is the probability
of a single post with emotion e being not affected by an
additional independent and identically distributed random
process. Such a process has been neglected in our model
although it could lead to additional fluctuations disrupting the
MET phase. One can then estimate a suppressing factor 	 that
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FIG. 13. (Color online) Examples of the threads from Blog06 where l are marked in red. (a) a thread with a cluster of the size nmax = 72
that closed the discussion (γ = 1). (b) a cluster with the size nmax = 99 that started a discussion with l = 129 comments, where le = 128
messages expressed the same emotional values and one message was different. The γ coefficient for this thread was 0.992.

limits the observed number of MET events

	(〈γ 〉e) = 〈γ 〉ne
c

e . (22)

Using the data from Table I and the 〈γ 〉0 ratio estimated
above we get the value 	0 = 0.39 for neutral MET in Blog06.
This suppressing factor can be compared to the ratio of a
number of observed MET events to a number of predicted MET
events following Table I 
0 = md

th/ms
th = 0.16. Although our

approach to estimate the effects of fluctuations is elementary
we receive a fairly good agreement between parameter values
	0 and 
0. The small statistics of positive and negative METs
events (md

th = 4) was an obstacle for the noise level estimation
in those cases.

In summary, the MET phase can be detected in real
data sets if affective interactions described by parameters
p(e|e) and α are strong enough and the threads are long. In
our case the necessary condition was met only for Blog06
data and here indeed we have observed a number of MET
cases, however the effects of fluctuations suppress their
emergence.

0 100 200 300 400 500 600
l

0.85

0.9

0.95

1

 γ

negative
positive
neutral

FIG. 14. (Color online) Relation between γ coefficients and MET
cluster sizes l for Blog06. Red diamonds correspond to positive MET
events, blue triangles to negative events, and black circles to neutral
events.

VII. CONCLUSION

We studied a specific long-memory stochastic process that
represents a data-driven binary model of emotional online
discussion threads. The dynamics is described by non-negative
parameters x and α corresponding respectively to the single-
step memory and to the characteristic exponent of the prefer-
ential process of mono-emotional cluster building. Analytical
and numerical calculations show that in such a model persistent
mono-emotional threads (MET) can emerge when a cluster
reaches a critical size nc. This phenomenon takes place in
time Tc independent from the system size L. It follows that the
longer the thread the more likely it is that it will be ordered. For
finite threads fraction r of MET-containing threads increases
continuously with parameters x and α. However, in the ther-
modynamical limit L → ∞ there is a discontinuous transition
between a phase without mono-emotional threads r = 0 and
a completely ordered phase r = 1. The transition takes place
when either x → 0+ or α → 0+. If we consider fraction r as
an order parameter then corresponding susceptibilities diverge
for L → ∞ in such transition points. The extension of the
model to a three-state dynamics does not change its main
properties, e.g., the critical time Tc depends in a similar way
on the emotional interaction exponent α.

The behavior of our model resembles some features of
a dynamical phase transition induced by a long memory in
Markov chains studied in Refs. [4–7]. The observed increase
of fraction r of ordered threads with parameters x and α

corresponds to a transition from a diffusive to a superdiffusive
behavior reported in Refs. [4–7]. The transition takes place
when the memory correlation strength crosses a critical value.
Since superdiffusion means that the variance of correlated
sequence increases faster than linearly within the observation
horizon, it follows that the system is more persistent in this
phase. In our case the persistence corresponds to a more
frequent occurrence of the MET phase (coherent segments) in
various threads. There is however a crucial difference between
our model and systems studied in Refs. [4–7]. In our case
there is a nonzero fraction r of ordered threads for any α > 0
and x > 0 and thus critical values of these parameters can
not be uniquely defined. Another difference to the phenomena
observed in Refs. [4–7] is an intrinsic nonstationarity of our
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model. The MET phase emerges in the course of time thus a
thread can consist of two different phases. This is not the case
of systems studied in Refs. [4–7].

It is interesting that the emergence of MET phase was
observed for 43 threads in the Blog06 data set and the presence
of this phase could be explained by our model if corresponding
parameter values were used. The number of MET events is
much lower compared to theoretical estimations, which can by
explained be effects of fluctuations and sentiment classification
errors. The absence of the MET events in BBC and Digg data
sets is consistent with analytical and numerical calculations of
MET density in our model.
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[16] Z. Dezsö, E. Almaas, A. Lukács, B. Rácz, I. Szakadát, and A.-L.

Barabási, Phys. Rev. E 73, 066132 (2006).
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