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Abstract

A bistable model of a $nancial market is considered, aimed at modelling $nancial crashes
and bubbles, based on the Ising model with thermal-bath dynamics and long-range interactions,
subject to a weak external information-carrying signal and noise. In the ordered phase, opposite
stable orientations of magnetization correspond to the growing and declining market before and
after the crash or bubble, and jumps of magnetization direction correspond to crashes and bubbles.
It is shown that the in4uence of an information-carrying signal, assumed to be too weak to induce
magnetization jumps, can be enhanced by the external noise via the e5ect of stochastic resonance.
It is argued that in real stock markets the arrival of a piece of information, considered a posteriori
to be the cause for a crash or bubble, can be enhanced in a similar way, thus leading to price
return whose value is unexpectedly large in comparison with relatively weak importance of this
piece of information.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years there has been growing interest in the investigation of $nancial
markets as complex systems in statistical physics [1–43]. These studies revealed that
the empirical $nancial time series, e.g., for stock market price returns (forward in time
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changes of the logarithm of the stock price) can be perceived as complicated stochastic
processes with strongly non-Gaussian characteristics [3–9]. It was also shown that the
universal features of such time series, e.g., volatility clustering (large irregular bursts
of price returns superimposed on otherwise noisy small-scale 4uctuations, resulting in
power-law tails in probability distributions of price returns and in the autocorrelation
function of absolute values of price returns) can be modelled as collective phenomena
in complex physical systems. The respective models can be based, e.g., on numerical
simulations of behavior of many interacting agents whose reactions to price changes
follow certain rational rules [10–14], on the theory of stochastic processes with multi-
plicative noise [15], percolation theory [16–18], Ising model [19–26], etc.

A signi$cant part of research on $nancial time series is devoted to crashes, i.e.,
large negative price returns preceded by long-lasting phases of price growth. Similar,
but less spectacular events of large positive price returns can be called $nancial bubbles.
Crashes are atypical phenomena in the market, in the sense that they deviate from the
statistics of price returns obtained at times when there were no spectacular price falls
[27]. Empirical studies suggest that crashes are similar to phase transitions in physical
systems, with the crash probability following a power scaling law in the vicinity of the
critical time (which need not be the time at which the crash occurs). This point of view
is also supported by observations of log-periodic in time oscillations of stock prices
superimposed on the rising trend before the crash [28–39], although there were also
doubts if such oscillations are common precursors of crashes [40,41]. The log-periodic
oscillations are typical of phase transitions in systems with discrete-scale invariance
[44]. As a result, several microscopic models of $nancial crashes based on the con-
cepts of the theory of critical phenomena were proposed. For example, in the model
of Ref. [42], the hierarchical structure of agents’ actions leads directly to log-periodic
oscillations. However, other models mostly neglect the problem of oscillations, while
still considering the crash as a kind of a phase transition [16–18,23–26,43] in a system
of many interacting agents. In particular, this can be a transition leading to ordering of
the actions of all agents in the market, analogous to the paramagnetic–ferromagnetic
transition in the Ising model [25,26], or the percolation transition [16–18]; since, if
all agents place the same order (to sell stocks) at the same time, a sudden fall of
the traded stock price will inevitably occur. A di5erent point of view is adopted in
the model of Kaizoji [23,24]. This is in fact the Ising model with non-zero tempera-
ture slightly below the critical temperature, with the agents treated as spins with two
possible orientations imitating the decisions to sell (down) or buy (up) stocks, and
with the magnetization (average orientation of agents) proportional to the stock price
return. In this model, the two equivalent ordered (ferromagnetic) phases with opposite
orientation of magnetization correspond to the growing and declining phases of the
market before and after the crash, respectively, and the crash itself is seen as the jump
of magnetization from the up-to-down orientation due to, e.g., thermal 4uctuation. The
jump in the opposite direction can be associated with a $nancial bubble.

A common feature of all crashes is that they are random events whose direct cause
cannot usually be found, although a posteriori several reasons for the occurrence of a
crash can be given [28]. In order to get some understanding of the origin of crashes, in
this paper, we consider the e5ect of a weak external force acting on the agents in the



A. Krawiecki, J.A. Ho lyst / Physica A 317 (2003) 597–608 599

above-mentioned microscopic spin model of the market of Refs. [23,24]. The force,
modelling the a posteriori found cause for a crash (e.g., arrival of a piece of informa-
tion accessible to all agents), is assumed to be too weak to cause the magnetization
inversion (crash or bubble). However, we propose that its e5ect can be ampli$ed by ex-
ternal noise and internal 4uctuations so that the magnetization orientation can be highly
correlated with the external force. The mechanism of ampli$cation is the well-known
phenomenon of stochastic resonance [45–47] (for review see Refs. [48,49]). Stochastic
resonance occurs in certain, mainly non-linear systems driven by a combination of the
information-carrying signal (usually assumed to be periodic) and noise. An important
class of such systems are bistable systems, e.g., a particle in a bistable potential driven
by additive signal and noise. The information-carrying signal is assumed too weak
to induce particle jumps between the two potential wells; however, addition of noise
enables jumps and the information-carrying signal modulates the probability of jump
out of the two potential wells in an asymmetric way. It turns out that for an optimum
non-zero noise intensity, the output signal from the system re4ecting the location of the
particle in the left or right well can be highly correlated with the external signal. In the
case of a periodic signal, stochastic resonance is characterized, e.g., by a maximum of
the output signal-to-noise ratio at the frequency of the external signal for the optimum
noise intensity. In this paper we show that, analogously, the e5ect of weak external
force can be ampli$ed by external and internal noise in the bistable model for $nancial
crashes and bubbles.

2. The model

In this paper we work with a microscopic model of a stock market [23,24] whose
general features are common to many spin models aimed at modelling economic and
social phenomena. We consider i = 1; 2; : : : ; N agents (spins) with orientations �i(t) =
±1, corresponding to the decision to sell (−1) or to buy (+1) a share of a traded
stock at discrete time steps t. The orientation of the agent i at time t + 1 depends on
the local $eld

Ii(t) =
1
z

N∑
j=1

Aij�j(t) + hi(t) ; (1)

where z is the mean coordination number (the mean number of non-zero connections
between agents), Aij are interaction strengths per agent (possibly zero), and hi(t) are
external $elds re4ecting the e5ect of environment (e.g., access to external information).
The dynamics of the model consists in updating synchronously the orientations of all
agents according to the probabilistic rule

�i(t + 1) =

{
1 with probability p ;

−1 with probability 1 − p
(2)

describing uncertainty in decision-making of the agent i, where p=1={1+exp[−2Ii(t)]}.
Thus, the model under study is a kind of Ising model with thermal bath dynamics
(formally, with the “temperature” kBT = 1); the application of such class of models in
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economics and sociology is theoretically and empirically supported by the social impact
theory of opinion formation [50–56]. From the above-mentioned model, the dynamics of
price S(t) is obtained by introducing the average orientation of agents (magnetization)
x(t) = N−1 ∑N

i=1 �i(t) and using the equation dS=dt˙ xS, which follows from the
fact that x(t) is proportional to the di5erence between demand and supply. Thus, after
discretizing time, the price returns R(t)=log S(t+1)−log S(t) ful$ll the proportionality
relation R(t) ˙ x(t). In the mean-$eld approximation and in the thermodynamic limit,
the dynamics of x(t) can be obtained in a simple form, provided that Aij = A and
hi(t) = h(t) for all i, j

x(t + 1) = tanh[Ax(t) + h(t)] : (3)

The above equation remains true if the interaction strengths Aij and external $elds hi
are randomly and symmetrically distributed around their respective mean values, and
if the number of agents N and the coordination number z are large enough; in most
cases considered in this paper the above assumptions are ful$lled.

The $rst term on the right-hand side of Eq. (1) describes the in4uence of other
agents on the decision of agent i at time t + 1, and has a form of weighted average
over the decisions at time t of all agents to whom the agent i is related. This term
is responsible for the collective behavior of the agents: positive connections between
agents Aij ¿ 0 mean that they will more probably follow the decisions of their partners,
while negative connections Aij ¡ 0 prefer opposite decisions. Writing Aij=A+(Aij−A),
where A is the mean value of the interaction strengths Aij, the interaction term contains
a part (NA=z)x(t) proportional to the price return R(t). Thus the $rst term in Eq. (1)
describes simultaneously the reaction of agents to the price changes, which emerges in
this model as a result of averaging reactions to the past decisions of partner agents.
It can be seen from Eq. (3) that for large N , z and h(t) = 0, if 0¡A¡ 1 the state
with x = 0 is a stable state of the system, while for A¿ 1 the system is bistable,
and there are two symmetric stable states x+ ¿ 0, and x−¡ 0 ful$lling the equation
x± = tanh(Ax±). The former state corresponds to a disordered phase with no preferred
orientation of agents (paramagnetic phase), while the two latter states correspond to
equivalent ordered phases with opposite average orientations of agents (ferromagnetic
phase). Since the states with x = 0, x = x+ ¿ 0, and x = x−¡ 0 correspond to zero,
positive and negative price returns, respectively, from the economical point of view,
they can be interpreted as the market in equilibrium, the growing market, and the
declining market. The crash in turn is the change of the average orientation of agents
from positive to negative, while the bubble is the change of this orientation from
negative to positive. In the mean-$eld limit of Eq. (3), for A¿ 1, the jumps of the
average orientation of agents can occur under the in4uence of the external $eld h(t)
which points towards the preferred orientation of spins. In a system with large but
$nite N there are also thermal 4uctuations of x(t) which can cause thermally induced
jumps of the average orientation of agents.

Concerning speci$c features of our model, we assume the interaction strengths in the
form Aij=A(1+a�ij) with probability P, and Aij=0 with probability 1−P, where A¿ 0
is the mean strength of non-zero interactions, �ij are random uncorrelated variables with
uniform probability distribution in the interval (−0:5; 0:5), and a¿ 0 is the relative
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range of distribution of interaction strengths between agents around their mean value.
It follows that the mean coordination number z = NP. To model $nancial crashes and
bubbles, A¿ 1 is assumed so that, at least in the mean-$eld approximation, the system
is bistable, as desired. The case P = 1 corresponds to the fully connected model. No
speci$c topology of connections is imposed since nowadays the interactions between
agents are more and more determined by di5erent kinds of long-range communications
instead of spatial neighborhood, which makes the topological structure of the interaction
network unimportant. Thus, provided that P is large enough, the conditions for the
applicability of the mean-$eld approximation to our model are ful$lled. The external
$elds are assumed as

hi(t) = (1 + b�i)(s(t) + D�(t)) ;

s(t) = q cos!st ; (4)

where s(t) is the information-carrying signal, �(t) is Gaussian uncorrelated noise with
variance one, �i are random uncorrelated variables with uniform distribution in the
interval (−0:5; 0:5), and b is the range of distribution of agents’ reaction coeNcients
on external signals around their mean value one. Eq. (4) describes the “hidden” cause
for crash, in the form of a weak external stimulus acting simultaneously on all agents,
and the noisy in4uence of environment to each agent. At every time step t the direction
of hi(t) indicates the preferred orientation of �i. The amplitude q of the signal s(t) is
assumed too small to enable, for given A¿ 1, the jumps of the average orientation of
agents between the two equivalent states in the mean-$eld approximation. However, for
moderate noise intensity D, the jumps are possible both in the microscopic model and
in the mean-$eld dynamics of Eq. (3), and the average orientation of agents can be
correlated with the signal s(t). It should be emphasized that we assumed the external
forcing in the form of a periodic signal only for convenience, as in most papers on
stochastic resonance, which by no means suggests that there should be any hidden
periodicity in the occurrence of $nancial crashes. In fact, it is well known that the
e5ect of a weak aperiodic signal in a bistable potential can be enhanced by noise; this
phenomenon is known as aperiodic stochastic resonance [57].

3. Methods of analysis

In the following, the response of the system of Section 2 to the information-carrying
signal in Eq. (4) is investigated as a function of the external noise intensity D, for $xed
A¿ 1, and for various densities P of connections between agents. The output signal
y(t) is de$ned as a sign of the average orientation of agents, y(t) = sign(x(t)). Such
two-state approximation is typical in the investigation of stochastic resonance in bistable
systems [46], and means that only the periodic component connected with the switching
of the average orientation between equivalent states is taken into account, while the
possibly periodic oscillations around the $xed points x± are neglected. Thus, only the
occurrence of crashes (and bubbles) due to the arrival of some external information is
analyzed, rather than small changes in the orientation of agents not related to large price
returns. Qualitative theoretical analysis is performed in the mean-$eld approximation,
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Eq. (3), which after taking into account Eq. (4) yields x(t+1)=tanh[Ax(t)+q cos!st+
D�(t)]. Numerical simulations are performed both in the mean-$eld approximation and
with a full microscopic model with a large number of agents N . From the output signal
y(t) its power spectral density S(!) is obtained; it consists of a broad noise background
and peaks at the odd multiples of !s. As a measure of stochastic resonance the output
signal-to-noise ratio (in dB) is used, de$ned as SNR = 10 log[SP(!s)=SN (!s)]. Here,
SP(!s) = S(!s) − SN (!s) is the height of the peak at !=!s and SN (!s) is the noise
background in the vicinity of !s. In our numerical simulations the signal-to-noise ratio
is normalized to the frequency bandwidth Pf=2−12 Hz, i.e., the power spectral density
is obtained by averaging results from many time series of y(t), each containing 212

points [46]. Stochastic resonance occurs if the curve SNR vs. D has a maximum for
D¿ 0.

It is worth noting that stochastic resonance has been so far investigated in the Ising
spin model in various dimensions [58–60], as well as in the Weidlich model of opinion
formation [61] and in a model for $nancial markets [62], the latter being also certain
extensions of the Ising model. In these papers, the response to weak periodic signals
was investigated mostly as a function of strength of thermal 4uctuations in the system
(temperature), without external noise, and the analysis was performed using the linear
response theory. As a result, for slowly varying signals the maximum signal-to-noise
ratio was obtained at the critical temperature (where the system is at the border between
the ordered and disordered phase), due to maximum susceptibility of the Ising model
at the critical point. In this paper, the level of 4uctuations is kept constant by assuming
A = const, and the noisy in4uence of the environment D is varied. Besides, assum-
ing A¿ 1 ensures that the market shows a tendency towards spontaneous, collective
ordering, so we usually work in a non-linear regime, far from the critical point. Thus,
the mechanism of stochastic resonance here is typical of bistable systems with addi-
tive noise rather than that of the Ising model with thermal bath dynamics close to the
critical point.

4. Theoretical analysis

In this section qualitative theoretical evaluation of the signal-to-noise ratio in our
model is performed using the adiabatic theory of stochastic resonance in bistable sys-
tems subject to slowly varying periodic forces [46]. Only the mean-$eld approximation
given by Eq. (3) for the dynamics of x(t) is considered. The signal-to-noise ratio in
a bistable system can be obtained if the dependence r(D) of the escape rate from any
of the two symmetric stable states to the opposite one on the noise intensity is known.
Then it is assumed that the periodic signal modulates asymmetrically the escape rates
from the two states, thus making them time dependent; so that during half of the pe-
riod, the escape from, e.g., the left state r+(D; t) is higher than that from the right one,
r−(D; t), and during the next half the asymmetry is inverse. For small periodic signal
amplitudes the rates can be expanded in the Taylor series to the $rst order

r±(D; t) = 1
2 r0(D) ± 1

2 r1(D)q cos!st ; (5)
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where r0(D) is the escape rate (equal for the two states) in the absence of the periodic
forcing for a given noise intensity. In the $rst approximation, the signal-to-noise ratio
is [46]

SNR =
#r2

1q
2

4r0Pf
; (6)

where the dependence of the signal-to-noise ratio on the bandwidth Pf has been
included. In bistable potentials with additive noise the rate r(D) is usually given by the
Kramers formula. However, in the case of Eq. (3) the noise is non-additive, thus making
the evaluation of the escape rates diNcult [46]. Hence, only qualitative estimations of
the signal-to-noise ratio can be easily given.

For h(t) = 0, the system (3) stays close to x = x±, and addition of small noise
and periodic modulation causes only that x(t), apart from performing large jumps,
4uctuates mostly in the neighborhood of these $xed points. Hence, in order to obtain
the estimator for the signal-to-noise ratio it can be assumed that for h(t) �= 0, the
jumps of the mean orientation of agents occur if and only if the zero of the function
f(x) = tanh[Ax(t) + q cos!st + D�(t)] is located right to x+ (crash) or left to x−
(bubble). This underestimates the true probability of jump by neglecting the possibility
of a jump under the in4uence of a sequence of several pulses of noise. The condition
for the jump of x(t) from the positive to negative orientation becomes then �¡�+ =
(−Ax+ − q cos!st)=D, and the escape rate r+ = Pr(�¡�+); similarly the jump of x(t)
from the negative to positive orientation occurs when �¿�− = (−Ax− − q cos!st)=D,
and the escape rate r−=Pr(�¿�−). It can be seen that both escape rates are modulated
by the periodic signal in an asymmetric way. Thus the coeNcients in Eqs. (5) and (6)
can be evaluated as

r0 = 1 − erf
(
Ax+√

2D

)
; r1 =

2√
2#D

exp
(
−A2x2

+

2D2

)
: (7)

Another estimator of the signal-to-noise ratio can be obtained by assuming that the
jump of x(t) out of a given orientation occurs always if h(t) is such that the respective
$xed point x+ or x− disappears. This overestimates the true probability of jump since,
e.g., in the next step the $xed point can reappear due to a smaller value of the external
$eld, and the jump does not take place. The conditions for the disappearance of x+

and x− are, respectively, �¡ (−h0 − q cos!st)=D and �¿ (h0 − q cos!st)=D, where

h0 = −artanh
√

1 − A−1 + A
√

1 − A−1 : (8)

Similarly, as in the previous case, we arrive at

r0 = 1 − erf
(

h0√
2D

)
; r1 =

2√
2#D

exp
(
− h2

0

2D2

)
: (9)

It should be noted that in the mean-$eld approximation the condition for the peri-
odic signal to be unable to induce switching of the mean orientation of agents with-
out external noise is q¡h0, since then any of the two $xed points x± never dis-
appears. Under this condition, and provided that A¿ 1, inserting both estimations,
Eqs. (7) and (9) into Eq. (6) yields curves SNR vs. D with a maximum at D¿ 0
(Fig. 1(a)), thus suggesting possibility to observe stochastic resonance also in the
multi-agent simulations.
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Fig. 1. (a) Signal-to-noise ratio SNR vs. the noise intensity D for a model with A = 1:5, a = 2:0, b = 2:0,
q = 0:2: solid line—theoretical estimation using Eqs. (6) and (7), dashed line—theoretical estimation using
Eqs. (6) and (9), dots—numerical simulation in the mean-$eld approximation, circles—numerical simulation
of a system of N = 250 agents with P = 1; in the case of numerical simulations the solid lines are guides
to the eyes. (b) As in (a), but only results of numerical simulations for a system of N = 250 agents with
P = 0:05 (squares), P = 0:25 (diamonds), P = 0:50 (triangles), P = 1 (circles); the solid lines are guides to
the eyes.

5. Numerical results

The signal-to-noise ratio obtained from numerical simulations of the multi-agent
model with N = 250 agents and the probability P = 1, as well as from simulations in
the mean-$eld approximation, are shown in Fig. 1(a) and compared with theoretical
estimations of Section 4. In all cases stochastic resonance is observed, and the estima-
tors of the signal-to-noise ratio yield theoretical results comparable with the numerical
ones. The results from the multi-agent simulation $t well those from the mean-$eld
simulation, despite a relatively small number of agents N and large values of a, b (note,
however, that for the parameters in Fig. 1 all interaction strengths Aij and agent’s re-
actions to external signals are positive). For this simulation, a relatively large value of
A = 1:5 was assumed (the system was deeply in the bistable regime) in comparison
with the value A = 1:05 proposed by Kaizoji for modelling the Japanese stock market
crash in 1997 [23]. This is because for A very close to unity and $nite N frequent
jumps of the mean orientation of agents resulting from internal system 4uctuations oc-
cur, making comparison with the mean-$eld limit possible only for very large N and
for prohibitively long simulation times.

In Fig. 1(b), the e5ect of dilution of connections between agents is shown. It can be
seen that decreasing P leads to some increase of the maximum of the signal-to-noise
ratio. However, for small P stochastic resonance disappears and the curve SNR vs. D
is monotonously decreasing. This is because for decreasing density of connections be-
tween agents and for zero external $eld there is order–disorder transition at Pc ≈ 0:01.
Thus for small P the system is either in, or close to, the paramagnetic (disordered)
state, so the agents can be easily oriented by a weak periodic signal without the help
of external noise. Besides, it should be noted that decreasing P is not equivalent to in-
creasing temperature in the Ising spin models with stochastic resonance [58–62] since it
does not a5ect the external $elds hi(t). Thus the maximum value of the signal-to-noise
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Fig. 2. Cumulative distribution of normalized price returns G = (x − 〈x〉)=
√

〈x2〉 − 〈x〉2, where the angular
brackets denote the time average, obtained from the numerical simulation of the mean-$eld model with
parameters given in Fig. 1 and D = 0:4 (close to the maximum of the signal-to-noise ratio); the distribution
was evaluated from x¿ 0 only, due to symmetry of Eq. (3) there is 〈x〉 = 0.

ratio at D=0 turns out to be almost constant for a range of small P instead of showing
maximum as in Refs. [58–62] close to Pc as a function of P.

It should be emphasized that permanent switching between symmetric states (growing
and declining market), with or without a periodic component, is not a realistic model
for a true market. This can be seen from the cumulative probability distribution &(G)
of normalized price returns G obtained from the mean-$eld simulation of our model
(Fig. 2). For real markets this distribution has a pronounced maximum at x=0 and tails
decaying according to a power law [5], which re4ects the fact that the market remains
mostly in equilibrium where the returns are small, while large returns are seldom. In
Fig. 2, the distribution is, in contrast, bimodal (only positive part is shown), which is
obvious from the assumed bistability of our model, and which also indicates a high
probability of crash or bubble (large negative or positive return). We stress once more
that we chose the bistable model, and the information-carrying signal in the form
of a periodic function, only in order to obtain good statistics for the signal-to-noise
ratio, which is a measure of enhancement of the external signal by noise in most
papers on stochastic resonance. In fact, it seems that from time to time the actions of
the agents in the market become highly synchronized; this situation can be modelled
by, e.g., increasing the parameter A with time as long as an ordered phase occurs,
corresponding to a growing or declining market. A similar mechanism for market
ordering was proposed, e.g., in Ref. [25], where, however, the occurrence of ordered
phase was identi$ed with an immediate crash; since then all agents place simultaneously
the same orders. According to our interpretation, the market can remain in the ordered
phase for some time. Then the arrival of, maybe, an unimportant piece of information
causes a sudden inverse of the average orientation of agents (crash or bubble) due to
the enhancement of the e5ect of information-carrying signal by noise. This piece of
information can be a posteriori recognized as, e.g., a cause for crash; after the crash
the market can continue declining, but after some time it usually returns to equilibrium
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via, e.g., decreasing the mean interaction strength A with time. A symmetric situation
can take place before and after a bubble. However, modelling the buildup of ordered
phase before the crash or bubble is beyond the scope of the present model.

6. Summary and conclusions

We considered a microscopic model of a stock market, in which the agents were
treated as spins in the Ising model with thermal-bath dynamics and long-range in-
teractions, subject to the external information-carrying signal and noise. In order to
model $nancial crashes and bubbles, strong enough average interaction strength be-
tween agents was assumed, leading to bistability of the average orientation of agents
with two equivalent orientations corresponding to the growing and declining market.
The crashes and bubbles were modelled as jumps of the mean orientation of agents
between the two stable orientations, under the in4uence of the information-carrying
signal and noise. It was shown that even if the information-carrying signal is not
strong enough to induce crashes, its e5ect can be enhanced by optimum noise via
stochastic resonance. Stochastic resonance was observed both in multi-agent and mean-
$eld simulations, and qualitatively explained theoretically using the adiabatic theory
valid in bistable systems with external noise.

The main outcome of this investigation is that the apparently weak stimuli from
outside can have potentially strong e5ect on $nancial markets by creating large price
returns if they are enhanced by noise. Such stimuli can be a posteriori identi$ed with,
e.g., the causes for crashes, although at their arrival nobody usually expects that crash
occur. For this purpose the market has to be far from equilibrium, with most agents
sharing the same orientation just before the crash or bubble. The possible role of
stochastic resonance in the occurrence of stock market crashes and bubbles does not
exclude, of course, that the crash or bubble can appear either under the in4uence of
a very strong signal, able to invert the average orientation of agents without the help
of noise, or due to some internal or external 4uctuation, when even a posteriori the
possible cause for crash or bubble is diNcult to $nd.
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