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We study the influence of noise on information transmission in the form of packages shipped between nodes
of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free

Ravasz-Barabasi networks as well for a real network formed by email addresses of former Enron employees.
Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of
packets paths. The second one originates from random changes in initial network topology. We find that the
information transfer can be enhanced by the noise. The system possesses optimal performance when both
kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There
is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of
nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

challenging research issue is the understanding of the effect of a network topology on the transfer of

information'. Many biological, technical and social systems posses hierarchical structures, e.g., meta-

bolic networks*®, protein interaction networks®?®, the Internet’, theWorld WideWeb'’, and social net-

works'' "' Topologies of networks evolve over time in order to maximize the systemic efficiency. An important

part of this efficiency is the optimal information exchange, even though the meaning and spreading of informa-

tion varies considerably among such fields as mathematics'®, physics'®, biology'”'?, social science, communication
and computer science'**.

When information is transmitted through a complex network, the process can be represented as an evolution of
a distributed information field that is related to the states of network nodes (and/or links) or as paths of localized
packages traveling through the network. In the first case, nodes and links can form systems of coupled threshold
devices'”"” or oscillators® that make it possible to propagate a signal from the sender to the receiver. In the second
case, the nodes possess some binary variables that can be transmitted from one node to another.

Several authors have considered various features of network typologies that influence information transfers
(e.g., if the information flow in a scale-free network is more efficient than in a regular lattice)'>**. Furthermore, it
is shown to be crucial wether a network consists of heterogeneous (e.g. routers and peripheral nodes)"* or
homogeneous>*'”" nodes with similar connection degrees. Another important attribute is the edge heterogenity
in weighted networks®*** or the network clustering coefficient since a lack of loops in a network can impose a less
efficient information transfer®.

There exist several ways to incorporate packet dynamics, from rule simple random walks (e.g. to more
elaborate ways, like biased random walks with some local and/or global navigation rules (e.g.">***,). It is also
possible to implement epidemic models such as SIR (e.g."'®*',). Moreover, we can consider single particles
(e.g."*?*?%,) or interacting particles systems (e.g.>*”*,). The types of dynamics we choose strongly depends on
the interpretation of the modeled information transfer.

This paper considers a prototypical model for the flow of information represented by packages travelling on
networks with hierarchical structures. We are particularly interested in the dependency between network struc-
tures, noise, and information transmission efficiency. We take into account two types of noise in the system. The
first one corresponds to a non-deterministic part of system dynamics while the second one to the level of difference
between the current network structure in comparison to original one. Numerical simulations show a resonance-
like behavior of information transfer efficiency in the presence of both types of noise.

This paper is organized as follows. Section Networks topology and topological noise introduces the topology of
hierarchical networks. Section Packet navigation rules describes the imposed packet dynamics. Section Results for
artificial networks presents the numerical results for the artificial networks, while Section Real network is devoted

2,25,27))
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to a real hierarchical network based on email exchanges between
former Enron employees. Finally, Section Discussion presents the
conclusions of our study.

Results

Networks topology and topological noise. This section considers
the information flow through hierarchical networks that are
organized as a system of communities (e.g.''"",) with an additional
feature that we call topological noise. This noise corresponds to the
false information that we possess about a network topology and can
result, for example, from the process of links rewiring while the data
about this process are not stored in an appropriate vector of nodes
communities membership. In such a case, a package that is sent from
node i to node j can fail to be delivered in a time that is proportional
to the network size, since its path is traced using partial error data.

Network with a tree structure. A tree structure can be considered
as the most natural hierarchical network model. For simplicity, all
nodes in a given tree possesses the same branching factor, n.
Therefore the tree is built as follows: there is a single node at the first
hierarchical level. The second level consists of n offspring nodes that
branch to the third level, which consists of n * n nodes, and so on,
until it reaches the required level of hierarchy, h, where the tree does
not branch further. The branching factor, #, and the number of all
hierarchy levels, h, are unique tree parameters. At every tree level, 1
< n = h a community is defined as a group of all # nodes at this level
with the same “mother-node” at the level  — 1; therefore, there are
n"~? of communities at the level 7. The mother node at the level y = 1
will be treated as a separate community. If node, i, belongs to a certain
community, it can be described by a vector, ¢;, hof a dimension equal

+1 and a Ilth

vector component cﬁ =1 where the node, i, belongs to the Ith com-
munity or ¢/ =0 where it does not belong (I = 1, 2, ... D). The full
information about the network structure can be stored in a network
adjacency matrix; however, the community vectors, ¢; contain local
structure information that will be used in a navigation algorithm for
travelling packages (see below).

Let us assume that the initial tree structure is changed and with a
probability, p, every edge is randomly rewired, i.e., a link between
nodes i and j can be changed to a link between i and k (here i, j and
k are randomly chosen nodes). We assume that the ¢; vectors of a
membership of nodes in communities were defined for a network
without noise (p = 0) and are kept constant during topology changes.
Therefore, with increasing rewiring probability p it becomes more
difficult to receive a packet due to its false community classification.
On the other hand, rewiring the links introduces shortcuts and loops
to the the original loop-free tree topology that can enhance trans-
mission efficiency. Although the total number of edges is constant for
any level of p, we may observe some changes in the node degree
distribution P(k), where most important difference occurs at the first
hierarchical level. If p — 1, then the original hierarchical structure is
completely lost.

to the total number of all communities D=

Ravasz-Barabdsi network. Hierarchical networks with a tree topo-
logy (without link rewring) posses a zero clustering coefficient, C, this
does not reflect the observation of real networks where the coefffi-
cient C ranges from 0:02 to 0:76%. In*, the authors proposed a
scale-free network with a high clustering degree, that results from
a hierarchical topology. This kind of hierarchical network is very
heterogenous, i.e., the nodes degree distribution follows P(k) % k™7,
y > 0.

We constructed the network in the same iterative way as proposed
in*. The first hierarchical level is a community of five fully-
connected nodes. The first node is considered a central node and
the remaining four nodes are considered peripheral nodes. The sec-
ond hierarchical level consists of four replicas of the community

from the first level. We connect all the peripherial nodes from the
second hierarchical level to the central node from the first hierarch-
ical level. Every level of the hierarchical structure is created in the
same way, i.e., four replicas of the network thus far constructed are
created and the peripheral nodes of this “new” level posess connec-
tions to the central node from the first level. In this network, com-
munity membership is defined as a group of five fully-connected
nodes (all the groups are created as replicas of the first level). This
means that we have one community at the first level, and four times
as many communities at all subsequent levels.

This study takes into consideration a network that consists of three
hierarchical levels and N = 125 nodes. In the case of the tree network
(See Section Network with a tree structure), we performed a random
rewiring process of all existing links with probability, p. However, the
information about the rewiring process is not updated in the vectors
of the nodes communities membership c;.

Packet navigation rules. We investigate the dynamics of packets
displacements on networks. This process represents an informa-
tion transfer between network nodes. A single package should
reach its receiver node in a finite time, T. The navigation rule that
governs the packet path possesses a local character and assumes
knowledge of the community vectors c;. The deterministic rules are
supplemented by a stochastic component that corresponds to the
noisy term in the Langevine equation. This means that, with a
probability g, the dynamics of the packets are similar to a random
walk and with the probability 1 — g, the packet is traveling according
to an algorithm that takes into account the community structure. In
every time step, the packet moves to one of nearest neighbours of its
temporary node. Different packets are considered separately, i.e., no
interactions between them are taken into account. The full
description of the algorithm for the packet dynamics is as follows:

1. First, a sender (s) and a receiver (r # s) nodes are randomly
selected for every packet.

2. In consecutive time steps, t = 0, ...T, the packet travels from
node to node. Therefore, packet a arrives at node i in time
step t.

(i) If t < T then the packet navigation algorithm jumps to
step (ii). Otherwise, the algorithm loop is completed and
the packet is considered undelivered.

(i) If in the nearest neighbourhood of node i there is a
receiver, r, for packet a then with a probability 1 — g
packet a is delivered to its receiver. If not, then the algo-
rithm goes to step (iii).

(iii) If in the nearest neighbourhood of node i there is a node
belonging to the same community as the receiver, r, then
with a probability 1 — g, packet, g, is moved to this node.
Otherwise, the algorithm moves to step (iv).

(iv) Packet a is moved to a randomly chosen node from its
nearest neighborhood.

(v) If packet a finds its destination, the loop is completed. If
not, then the navigation algorithm returns to the starting
point (7).

All investigated networks are unweighted and undirected. It is
important that the algorithm takes into account the membership of
nodes in communities as defined in the original network structure (c;
vectors), i.e., for the topological noise level p = 0 (before the links are
rewired). For p > 0, this leads to false information about the current
community structure, i.e. the level of difference between considered
network structure in comparison to original one. Particularly in the
case of p close to 1 and g = 0, the packet can never reach its des-
tination because of incorrect navigation rules. The case ¢ = 0 is not
completely deterministic, i.e., a destination node from one commun-
ity is chosen randomly from all community members. It is not supris-
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ing that in the absence of dynamical noise the algorithm is not
optimal. One can imagine some deterministic corrections that can
improve efficiency of information transmission. An interesting phe-
nomenon is the influence of both types of noise (g > 0 and p > 0) on
each other. The next Section discusses these effects in detail.

In this work we propose a simple model of information transmis-
sion that takes advantage of hierarchical community structure of
considered networks. More complex rules of packets dynamics
and/or different kinds of topologies are possible, e.g. networks with-
out hierarchies but with a visible community structure. For the case
of networks when one can not distinguish any cliques algorithms
similar to the proposed in this work will be similar to a random walk
dynamics. A natural extension of proposed navigation rules could be
an algorithm taking into account interactions between packages. In
such a case every node would possess a finite capacity thus package
arrival times would be important. It would result in a network con-
gestion that would reduce information transfer efficiency. This effect
could be avoided if more elaborated rules of packets dynamics are
introduced, e.g. a next packet destination is chosen with a probability
corresponding to the community membership of packet destination
node and the nodes occupation.

Results for artificial networks. We examined the package
transmission efficiency for different levels of noise contaminating
the network topology, p, and the packets’ dynamics processes, g.
The maximal acceptable time, T, of packet delivery was chosen
proportional to the network size T = N. For each pair of
parameters, p and g, we consider L = 1,000 packets and the results
were averaged over Q = 1,000 realizations, i.e., during the journey of
L packets we kept the network topology constant and considered a
random ensamble of Q network realizations for every p level. The
following quantities were chosen as measures of the system’s
efficiency:
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® The ratio of delivered packets L, = I;p, where L, describes the
number of delivered packets.

e The mean inverse of packet delivery time averaged over all
packets % = %Z%—lu, where 7, is the number of time
steps after which packet a reached its destination node. If
packet a was still undelivered after T time steps, we took

— =0,
Ta

Figures 1, 2 and 3 represent the results of our simulations.

Figure 1 presents the efficiency of packets delivery under the influ-
ence of topological or dynamical noise. Trees with various coordina-
tion numbers, n, and various numbers of hierarchical levels, h, were

investigated. As the ratio " describes the tree’s slimness (% is the tree’s
height and n is its width), the three cases can be distinguished: " >1
(slim trees), —<1 (thick trees), and —=1 (intermediate trees).
Parameters n an h were always chosen in such a way that the total
numbers of network nodes, N, were similar for all of the investigated
models. More precisely, trees with the following parameters were
taken into account: (n = 2, h = 8, N = 255), (n = 6, h = 4, N =
259),and (n = 16, h = 3, N = 273). In Fig. 1(a),(c) the functions ,(q)
nd (1))
trees. This means that in the absence of topological noise (p = 0) the
stochastic component of the system dynamics (q > 0) diminished the

efficiency of the packets’ delivery, measured both as a fraction [, of
delivered packets as well as the mean inverse of the packet delivery

monotonically decreases for all classes of investigated

1
time ( — ). One can also observe that the quantities, [,(q) and
T

<l (q)>, are smaller for slimmer trees.
T
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Figure 1| Information transmission efficiency for tree networks with the presence of a single noise. In the figures hx ny stands for trees with different
number of hierarchies / and different branching factors n, see also main text. (a) Ratio [,(g) of delivered packets as a function of dynamical noise in the
absence of topological noise (p = 0). (b) Ratio I,(p) of delivered packets as a function of topological noise in the absence of dynamical noise (q = 0).

1
(¢) Averaged inverse time of packet delivery ( - (q)
1 T
time of packet delivery <— (p)
T

standard deviations of mean values over Q realizations.

as a function of dynamical noise, ¢, in the absence of topological noise (p = 0). (d) Averaged inverse

as functions of topological noise, p, in the absence of dynamical noise (q = 0). Sizes of symbols correspond to error bars of
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Figure 2 | Information transmission efficiency for tree networks with the presence of both type of noise. (a)—(c) Ratio I,(g, p) of delivered packets as a

function of both types of noises for trees with different branching factors, n, and number of hierarchical levels, h. (d) Averaged inverse time
packet delivery as a function of both types of noises for n = 16 and h = 3.

On the other hand, the behavior of the system is much more
complex when dynamical noice is absent (g = 0) but the topological
noise is present (p > 0). The fraction of delivered packets, L,(p),
increases for slim trees and is approximately constant for intermedi-
ate trees, but decreases for thick trees. This behaviour can be under-
stood as follows: there are two limiting cases when the total number

2
of tree nodes, N, is constant: — - N (chain) and — — — (star). It is

clear that for the star topology’%he rewiring of links (p > 0) increases
the mean distance (x) in a network ({(x)y, — 2 when N — o);
therefore, the fraction of undelivered packets by time T = N
increases, and the fraction of delivered packets I, decreases. The
situation in a chain is quite different. The mean distance is {(x)c;g4in
—> 2N/3 when N— o; therefore, it is much larger than a typical range

Figure 3 | Topology of RB network.

(@) Yot

of packet exploration ™ oc\/N (after N time steps). A random
rewiring of links diminishes the mean distance and ultimately,
increases the fraction of delivered packets [,(p) (see Fig. 1(b)).

However, these arguments are not valid for the behaviour of the

1
mean inverse of the delivery time ( —(p) ) since this quantity con-

tinuously decreases as a function of parameter p (see Fig. 1(d)). The
result for a tree with ki = 3, n = 16 shows that although the number of
undelivered packets increases (Fig. 1(b)) a number of shortcuts that
contribute to relatively small delivery times also emerge. The apper-
ance of these shortcuts compensates for the information losses due to
undelivered packages in thick trees in the presence of topological
noise.

These features result in a partial non-trivial behavior of quantities

1

I, and { — ) when both kinds of noise are present (Fig. 2). Since the
T

quantity I,(p) for g = 0 is an increasing function in the case of slim

trees " >1 this quantity decreases as a function of q for p = 0, thus
the maximum of network efficiency observed at Fig. 2(a) for p = 1
and g < 1 is a direct result of Fig. 1(a),(b). For intermediate trees

— =1, we observe a similar behaviour, but the maximum shifts

n
towards larger values of g (see Fig. 2(b)). This corresponds to a flat
resonance behavior as a function of dynamical noise. On the other

hand, for thick trees ﬁ <1 there were two maxima (see Fig. 2(c)). The
first one was for p 2o, q < 0.75 as was expected from Fig. 1(a),(b).
The second one is much more pronounced since it emerged in the
middle of the two-dimensional p, g parameter domain and possesses
clear resonance characteristics. This resonance was not expected
from Fig. 1(a),(b) and it was a result of the synergetic interactions
between dynamical and topological noises. The effect did not occur

for the quantity ( — ) for all three considered types of trees that
T

displayed only a maximum for p = 1 and q = 0, which was antici-
pated from Figs. 1(c),(d).

Fig. 3 demonstrates that the hierarchical Ravasz-Barabasi (RB)
network (Section Ravasz-Barabdsi network) possesses a larger
information transmission efficiency when compared to the trees.
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This is probably related to a larger nodes degrees diversity of the
network. Moreover, for p = 0 and g < 1, almost all the packages
were delivered, i.e., [,(q) = 1 (Fig. 3(a)). When g = 1, the information
transfer is still very efficient when compared to the trees (I,(g) > 0.9).
Furthermore, in the absence of dynamical noise (g = 0), a large
fraction of packets were delivered, but lp(p) decreased with p, ie.
the more random the network topology was the less efficient the
information transfer was(Fig. 3(b)). As one can expect, in the absence

of topological noise p = 0, the quantity, ;(q) , monotonically

decreases with g (Fig. 3(a)). In the absence of dynamical noise the
quantity I,(p) displays a local maximum for p = 0.25 and monoton-
ically decreases for higher p-values.

The main difference in the information transmission efficiency
of the Ravasz-Barabdsi and tree networks is presented at the
Fig. 3(c),(d). We observe that only in the limit of dynamical noise
(g = 0) and high level of topological noise (p > 0.7), the information
transmission efficiency, as measured by ratio of delivered packets, is
not perfect (I, < 1). For all the other cases, almost all of the packages
were delivered; therefore, [, = 1 (Fig. 3(c). It is necesssary to stress
that the [, quantity is always larger in RB networks than for trees

1
(Figs. 2(a)-(c)). Furthermore, <7> is always higher for Ravasz-
T

Barabasi networks than for the tree networks (packets are delivered
faster on heterogenous networks). The optimal range of the delivery
parameters are p < 0.5 and g < 0.2 (Fig. 3(d)).

Real network. Description of Enron email network. We compared
our observations of information transfer efficiency in artificial
systems with corresponding parameters of a real network. This
study took into account connections between former Enron
employees that are available from®. Nodes are email addresses and
a link between two nodes means there was at least one email
exchange between them (N = 1, 144). The dataset was considered
because of its hierarchical structure (see Fig. 4). The communities
were identified using the Blondel community detection algorithm™.
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This is a heuristic method that is based on modularity optimization.
Real networks are not perfectly hierarchical and for this reason one
can say about an effective value of p, i.e. how many links were rewired
and how many links lay outside hierarchy even for p = 0. It is obvious
that every community detection algorithm works better when the
number of links between communities is smaller. Basing on testing
results for the accuracy of well defined nodes community belonging
we found the Blondel algorithm beeing appropriate to our case. We
detected 22 communities with sizes ranging from 2 to 227. One can
say that the Enron email network possesses a heterogenous degree
distribution of nodes as well as heterogenous community
distribution.

Results for packets dynamics on the Enron email network. We analyze
the information transfer efficiency of our packets shipping algorithm
in the context of Enron’s network topology. As in the case of the trees
and the Ravasz-Barabasi network (Sec.), we observed the dynamics of
L = 1,000 packets traveling during a maximum T = N time steps and
we averaged the results over Q = 1, 000 copies of a network with
rewired links. The outcome of numerical simulations is shown in
Fig. 5.

As in the case of the artificial networks studied in Sec. we began by
the influence of both types of noise separately. In Fig. 5(a) we observe
a result similar to that of Section Results for artificial networks, i.e., a

monotonic decrease of { — ) while the dynamical noise q increases.

This means that the noiserynamics has a negative influence on the
transmission efficiency when it is measured by the packet delivery
times. However, we stress the fact that the same noisy component
also influences the fraction of delivered packets, I,(q) (Fig. 5(a)). In
fact, this quantity increases from 0.5 when g = 0 to 0.9 when g =~ 0.5
(the dynamical noise increases the information transfer by a factor
close to 2!) and it stays close to the maximum value until the noise
level reaches the value g = 0.75. Such a surprising behaviour was not
observed in any of the artifical network studied in Section Results for
artificial networks, and we attribute this to the strong heterogenity of
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Figure 4 | Information transmission efficiency for RB network. (a) Ratio, I,(q), of delivered packets and averaged inverse time of packet delivery

T

)

as functions of dynamical noise, g, in the absence of topological noise (p = 0). (b) Ratio, I,(p), of delivered packets and averaged inverse time of

packet delivery { —(p) ) as functions of topological noise, p, in the absence of dynamical noise (g = 0). (c) Ratio, I,(g, p), of delivered packets as a function
T

1
of both types of noises. (d) Averaged inverse time of packet delivery, { —(g,p) ), as a function of both types of noises. Sizes of symbols correspond to error
T

bars of standard deviations of mean values over Q realizations.
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Figure 5 | Topology of Enron’s email network.

the distribution of the communities in the Enron network. Our
shipping algorithm used a local rule that forwards a packet to any
node belonging to a community containing the destination node.
Therefore, for large communities (227 connection were detected in
the Enron network), a packet spends a great deal of time randomly
exploring the community’s nodes. It seems that this process is less
efficient when compared to a random search of other paths to the
community that may be closer to the destination node.

In the absence of dynamical noise (Fig. 5(b)), one can see a max-

1
imum of ( — ) for p = 0.15. Above this value, the delivery time of the
T
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packets increases. This effect is very similar to the one observed in the
Barabasi-Ravasz network (Fig. 3(b)). Figure 5(b) also shows the ratio
of delivered packets, I, as a decreasing function of topological noise,
p- When we take into account both types of noise (Fig. 5(c)), the ratio
L,(p, @) of the delivered packets peaks at the non-zero values of the
parameters p and g. This behavior is only similar to the synergetic
effect of the two noises observed for the thick trees presented in
Fig. 3(c). In fact, in the case of the Enron network the optimal values
of p and g corresponding to the maximal system performance, can be
predicted directly from Figs. 5(a) and (b). Figure 5(d) shows that the
packages can reach their destination nodes faster in the absence of
topological and dynamic noise. This effect was also observed in the
Ravasz-Barabasi network (Fig. 3(d)).

Discussion

A naive understanding of the effect of noise on information trans-
mission is that stochastic components decrease the quality of
information processing in the system. On the contrary this study
demonstrates that generic packet-delivery undertaken by a local nav-
igation rule in a complex network can benefit from the presence of a
topological noise (random rewiring of links) and/or a dynamic noise
component (erratic jumps between neighboring nodes). This con-
structive effect of noise possesses similar features to Stochastic
Resonance® ™, which is common in several physical, biological,
and technical systems where noise enhances the information transfer
efficiency. To quantify this effect in most cases authors calculate SNR,
i.e. signal-to-noise ratio which shows system behavior with reference
to the noise background. The existence of SNR maximum for a
nonzero noise intensity is interpreted as SR. In our system we cal-
culate the ratio of delivered packets, which can be considered as
equivalent to SNR. In fact our system is not driven by an external
signal however sending packages corresponds to an external influ-
ence. In such a way the observed effect of packets delivery improve-
ment (due to nonzero noisy component) resembles SR. We need to
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Figure 6 | Information transmission efficiency for the Enron email network. (a) Ratio, /,(g), of delivered packets and averaged inverse time of

1
packet delivery { - (q) ) as a function of dynamical noise, g, in the absence of topological noise (p = 0). (b) Ratio, l,(p), of delivered packets and averaged
T

1
inverse time of packet delivery { —(p) ) as a function of topological noise, p, in the absence of dynamical noise (g = 0). (c) Ratio, L,(g, p), of delivered
T

packets as a function of both types of noises. (d) Averaged inverse time, {( —(q.,p) ), of packet delivery as a function of both types of noises. Sizes of symbols
T

correspond to error bars of standard deviations of mean values over Q realizations.
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add that Stochastic Reosonance in hierarchical networks where
nodes are threshold elements was observed in*.

It is also important to note that information transmission is gen-
erally more efficient for hierarchicial networks with heterogeneous
nodes (i.e., the Ravasz-Barabasi network and the Enron email net-
work), than for homogenous structures, e.g., trees with a fixed
branching factor, #. In the absence of dynamical noise, g, the mean
delivery time increases with p, in the case of trees. However, for the

1
other two considered networks we observed a maximum of { —(p)

for the intermediate level of the topological noise. For the ratio of
delivered packets, the tree behaviour depends on its slimness para-

meter, i.e., —, where h is the number of hierarchical levels. In the

absence of foise in system dynamics (g = 0) where some links are
rewired (p > 0), we identify three different cases (Fig. 1(b)). For

intermediate trees i.e., — =1, number of delivered packets is approxi-

mately constant. When the tree is slim, i.e., —>>1, the more links are
n

randomly rewired, the larger the fraction of delivered packets

l,(p). This information transfer improvement can be understood
as the result of loops that emerge in the rewired system. In fact,
the presence of such loops can enhance the network navigation
quality since they accelerate the system dynamics, i.e., the vertex
discovery rate and the mean topological displacement of a random
walker from the origin®. It seems that in the case of slim trees,
this effect outperforms the errors that result from false informa-
tion about the community memberships stored in the community

vector. When the tree is thick, i.e., — <1, the fraction Zp(p) mono-
n

tonically decreases with p; therefore, the effect of emerging loops
is not important for such systems.

It is worth noting that the combination of both noise components
results in non-trivial dynamics. In the case of thick trees, the optimal
solution for the packet-delivery algorithm (when the [, quality mea-
sure is considered) is to have intermediate levels of both types of
noise, although the presence of each stochastic contribution
decreases the system’s efficiency. For the Enron network topology
(Fig. 6(c)) the optimal information transfer was observed for non-
zero values of parameter g and p < 0.25; however, in this case, it
resulted from a resonant character of a single noise influence on the
fraction of delivered packages I, (Fig. 6(a),(b)). The most efficient
network is the hierarchical Ravasz-Barabasi network where the num-
ber of delivered packets is always higher than 90% for all the p and g
values. Therefore, we conclude that there is a constructive influence
of the two types of noise in these systems. In other words, a rando-
mized packet delivery helps to avoid paths from the false topological
information.
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