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1 Introduction

During the last few years various models of networks [1, 2] have become a
powerful tool for analysis of complex systems in such distant fields as Internet
[3], biology [4], social groups [5], ecology [6] and public transport [7]. Mod-
eling behavior of economical agents is a challenging issue that has also been
studied from a network point of view. The examples of such studies are mod-
els of financial networks [8], supply chains [9, 10], production networks [11],
investment networks [12] or collective bank bankrupcies [13, 14]. Relations
between different companies have been already analyzed using several meth-
ods: as networks of shareholders [15], networks of correlations between stock
prices [16] or networks of board directors [17]. In several cases scaling laws for
network characteristics have been observed.

In the present study we consider relations between companies in Poland
taking into account common branches they belong to. It is clear that com-
panies belonging to the same branch compete for similar customers, so the
market induces connections between them. On the other hand two branches
can be related by companies acting in both of them. To remove weak, acci-
dental links we shall use a concept of threshold filtering for weighted networks
where a link weight corresponds to a number of existing connections (common
companies or branches) between a pair of nodes.

2 Bipartite graph of companies and branches

We have used the commercial database ”Baza Kompass Polskie Firmy B2B”
[18] from September 2005. It contains information concerning over 50 000 large
and medium size Polish companies belonging to one or more of 2150 different
branches. A bipartite graph of companies and branches has been constructed
as at Fig. 1.
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Fig. 1. Bipartite graph of companies and trades.

In the bipartite graph we have two kinds of objects: branches A =
1, 2, 3....Nb and companies i = 1, 2, 3......Nf , where Nb – total number of
branches and Nf – total number of companies. Let us define a branch ca-
pacity |Z(A)| as the cardinality of set of companies belonging to the branch
A. At Fig. 1 the branch A has the capacity |Z(A)| = 2 while |Z(B)| = 3
and |Z(C)| = 1. The largest capacity of a branch in our database was 2486
(construction executives), the second largest was 2334 (building materials).

Let B(i) be a set of branches a given company i belongs to. We define a
company diversity as |B(i)|. An average company diversity µ is given as

µ =
1

Nf

i=Nf∑

i=1

|B(i)|. (1)

For our data set we have µ = 5.99.
Similarly an average branch capacity ν is given as

ν =
1

Nb

A=Nb∑

A=1

|Z(A)|, (2)

and we have ν = 134.
It is obvious that the following relation is fulfilled for our bipartite graph:

µNf = νNb. (3)

3 Companies and branches networks

The bipartite graph from Fig. 1 has been transformed to create a companies
network, where nodes are companies and a link means that two connected
companies belong to at least one common branch. If we used the example
from Fig. 1 we would obtain a companies network presented at Fig. 2.

We have excluded from our dataset all items that correspond to commu-
nities (local administration) and as a result we got Nf = 48158 companies,
belonging to a single connected cluster. Similarly a branch network has been
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constructed where nodes are branches and an edge represents connection if
at least one company belongs to both branches. In our database we have
Nb = 2150 different branches.

Fig. 2. Companies network on the left, branches network on the right.

4 Weight, weight distribution and networks with cutoffs

We have considered link-weighted networks. In the branches network the link
weight means a number of companies that are active in the same pair of
branches and it is formally a cardinality of a common part of sets Z(A) and
Z(B), where Z(A) is a set of companies belonging to the branch A and Z(B)
is a set of companies belonging to the branch B:

wAB = |Z(A) ∩ Z(B)|. (4)

Let us define a function fA
k which is equal to one if a company k belongs to

the branch A, otherwise it is zero:

fA
k =

{
1, k ∈ A
0, k /∈ A

}
. (5)

Using the function fA
k the weight can be written as:

wAB =
NF∑

k=1

fA
k fB

k . (6)

The weight distribution p(w), meaning the probability p to find a link with a
given weight w, is presented at Fig. 3. The distribution is well approximated
by a power function

p(w) ∼ w−γ , (7)

where the exponent γ = 2.46±0.07. One can notice the existence of edges with
large weights. The maximum weight value is wmax = 764, and the average
weight
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〈w〉 =
wmax∑
wmin

wp(w), (8)

equals 〈w〉 = 4.67.
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Fig. 3. Weight distribution in branches network.

Using cutoffs for link weights we have constructed networks with different
levels of filtering. In such networks nodes are connected only when their edge
weight is no less than an assumed cutoff parameter wo. In Table 1 we present
the main parameters of branches networks with changing wo. The clustering
coefficient has been calculated by the definition:

C =
1
N

N∑

i=1

2Ei

ki(ki − 1)
(9)

where Ei is the number of existing connections between neighbours of node
i and ki is the degree of vertex i. The values of clustering coefficient is very
high in comparison to random networks, and it remains almost at a constant
level for the presented values of cutoff parameter.

A weight in the companies network is defined in a similar way as in the
branches networks, it is the number of common branches for two companies
— formally it is equal to the cardinality of a common part of sets B(i) and
B(j), where B(i) is a set of branches the company i belongs to, B(j) is a set
of branches the company j belongs to:

wij = |B(i) ∩B(j)|. (10)
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Table 1. Data for branches networks: wo is the value of selected weight cutoff, N is
the number of vertices with nonzero degrees, E is the number of links, kmax is the
maximum node degree, 〈k〉 is the average node degree, C is the clustering coefficient.

wo N E kmax 〈k〉 C

1 2150 389542 1716 362 0.530
2 2109 212055 1381 201 0.565
3 2053 136036 1127 132. 0.568
4 2007 100917 952 100 0.575
5 1948 80358 802 82 0.589
6 1904 66353 655 69 0.592
7 1858 56565 569 60 0.596
8 1819 49193 519 54 0.597
9 1786 43469 477 48 0.599
10 1748 38924 450 44 0.600
12 1666 32167 394 38 0.615
14 1611 26088 325 32 0.605
16 1545 21762 288 28 0.606
18 1490 18451 259 24 0.603
20 1424 15872 226 22 0.604
30 1188 8989 162 15 0.585
40 996 6036 131 12 0.587
50 857 4379 111 10 0.572
60 752 3303 85 8 0.551
70 666 2638 65 7 0.524
80 575 2143 55 7 0.532
90 512 1808 49 7 0.538
100 464 1543 41 6 0.546
150 306 750 26 4 0.493

Using the function fA
k the weight can be written as

wij =
Nb∑

A=1

fA
i fA

j . (11)

The maximum value of observed weights wmax = 207 in this network is
smaller than in the branches network while the average value equals 〈w〉 =
1.48. The weight distribution in this case does not follow a power law and in
a limited range it shows an exponential behavior.

Similarly to the branches networks we have introduced cutoffs in companies
network. The dependence of selected network parameters on cutoff threshold
is shown in Table 2. The behaviour of clustering coefficient resembles the one
observed in the branches networks.

At Fig. 4 we present average degrees of nodes and maximum degrees as
functions of the cutoff parameter wo. We have observed a power law scaling

〈k〉 ∼ w−β
o , (12)
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Table 2. Data for companies networks: wo is the selected cutoff, N is the number
of nodes with nonzero degrees, E is the number of links, kmax is the maximum node
degree, 〈k〉 is the average node degree, C is the clustering coefficient.

wo N E kmax 〈k〉 C

1 48158 39073685 16448 1622 0.652
2 39077 9932790 8366 508 0.689
3 31150 3928954 4842 252 0.714
4 24212 1895373 3103 156 0.717
5 18566 1024448 2059 110 0.713
6 14116 622662 1412 88 0.710
7 10796 404844 1012 74 0.700
8 8347 266013 724 63 0.701
9 6527 180696 566 55 0.699
10 5197 124079 443 47 0.699
11 4268 94531 382 44 0.704
12 3400 68648 345 40 0.693
13 2866 54258 305 37 0.691
14 2277 36461 277 32 0.663
15 1903 28844 249 30 0.673
16 1627 23063 231 28 0.678
17 1397 18352 212 26 0.667
18 1196 14480 191 24 0.680
19 1003 11230 171 22 0.680
20 883 8907 159 20 0.676
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Fig. 4. Dependence of 〈k〉 and kmax on cutoff parameter wo for branches networks
(left) and companies networks (right).

kmax ∼ w−α
o , (13)

where for branches networks αb = 1.069± 0.008 and βb = 0.792± 0.005 while
for companies networks αf = 2.13± 0.07 and βf = 1.55± 0.04.
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5 Degree distribution

We have analyzed the degree distribution for networks with different cutoff
parameters. At Fig. 5 we present the degree distributions for companies net-
works for different values of wo. The distributions change qualitatively with
increasing wo from a nonmonotonic function with an exponential tail (for
wo = 1) to a power law with exponent γ (for wo > 6).
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Fig. 5. Degree distributions for companies networks for different values of wo. X-
marks are for wo = 1, circles are for wo = 2, squares are for wo = 3 and triangles
are for wo = 12.

At the Fig. 6 we present a degree distribution for branches networks. For
wo = 1 we observe a high diversity of node degrees — vertices with large
values of k occur almost as frequent as vertices with a small k. For a properly
chosen cutoff values the degree distributions are described by power laws.
For wo = 4 we see two regions of scaling with different exponents γ1 and
γ2 while a transition point between both scaling regimes appears at k ≈
100. Branches belonging to the first regime of scaling are more specific, for
example ”production of protective clothing”, ”poultry farmer”,”gemstone”
and branches on the right are more general like ”import and export general”,
”network of supermarkets”. We suppose that the mechanism of this behaviour
is similar to linguistic networks [19]. Appearance of a new general branch
creates connections between existing specific branches, what causes double
scaling in the end.
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Fig. 6. Degree distribution in branches network for different values of wo. Circles
are for wo = 1, crosses are for wo = 4.

It is important to stress that in both networks (companies and branches)
the scaling behavior for degree distribution occurs only if we use cutoffs for
links weights (compare Fig. 5 and Fig. 6). It follows that such cutoffs act as
filters for the noise present in the complex network topology.

6 Entropy of network topology

In order to examine how much information we fillter out, we have chosen to
investigate entropy S, using a standard formula for Gibbs entropy (14):

S = −
∑

k

p(k) ln p(k). (14)

The entropy of degree distribution in both networks decays logarithmically as
a function of the cutoff value wo (see Fig. 7):

S = −a ln(wo) + b. (15)

For branches networks fitting parameters are a = 0.834 ± 0.004 and b =
6.51± 0.02.

The entropy in companies networks behaves similarly with a = 1.79±0.05
and b = 8.49± 0.15. We have observed that decrease is faster with wo than in
the branches networks. This is due to different distributions of weight in both
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Fig. 7. Entropy dependence on cutoff parameter for branches networks on the left
and for companies networks on the right.

networks and a smaller range of weights in the companies networks. Since
they are filtered differently with wo we have observed dependence of S on the
parameter 〈k〉. This dependence is presented at the Fig. 8 along with results
of formula (16) with real values of kmax and γ. The formula (16) is calculated
for general case of power law distributions with kmin = 1.
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Fig. 8. Entropy dependence on the average node degree 〈k〉. X-marks represent mea-
sured entropy in companies networks and triangles represent the results of analytic
formula (16) (only for networks with definite power-law distribution).
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S(γ, kmax) = − ln
1− γ

k
(1−γ)
max − 1

+
γk1−γ

max ln kmax

k
(1−γ)
max − 1

− γ

(1− γ)
(16)

In our system, parameters γ and kmax depend on each other. Both are defined
by the cutoff paramter wo. The increase of wo results in the decrease of kmax

and increase of γ. Let us take the simplest possible situation — a uniform
distibution from kmin = 1 to kmax. For this case we calculated the entropy
analytically using the definition (14):

S(kmax) = −
∫ kmax

1

1
kmax − 1

ln(
1

kmax − 1
)dk = ln(kmax − 1), (17)

what is equivalent to :
S = ln(〈k〉 − 1) + ln 2. (18)

The value of 〈k〉 is strictly connected to the width of the distribution. Figure 9
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Fig. 9. Dependence of entropy on the average nodes degree. Circles represent
branches networks and X-marks represent companies networks. Line corresponds
to (18).

shows that such a simplistic approach gives a very good approximation of real
entropy value. We can conclude that the width of the distribution is the main
source of entropy changes in our systems. The presence of two parameters
( γ, kmax ) is irrelevant as both are derived from the same parameter wo.
We decided to use the single parameter 〈k〉 since it seems to be the most
significant and universal for different networks.
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7 Conclusions

In this study, we have collected and analyzed data on companies in Poland.
48158 medium/large firms and 2150 branches form a bipartite graph that
allows to construct weighted networks of companies and branches.

Link weights in both networks are very heterogenous and a corresponding
link weight distribution in the branches network follows a power law. Remov-
ing links with weights smaller than a cutoff (threshold) wo acts as a kind of
filtering for network topology. This results in a recovery of a hidden scaling re-
lations present in the network. The degree distribution for companies networks
changes with increasing wo from a nonmonotonic function with an exponential
tail (for wo = 1) to a power law (for wo > 6). For a filtered (wo > 4) branches
network we see two regions of scaling with different exponents. Entropies of
degree distributions for both networks decay logarithmically as a function of
cutoff parameter and are proportional to the logarithm of the mean node de-
gree. We have found the distribution width to be a crucial factor for entropy
value.
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