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We introduce a simple model of a growing system with m competing communities. The model corresponds
to the phenomenon of defeats suffered by social groups living in isolation. A nonequilibrium phase transition
is observed when at critical time tc the first isolated cluster occurs. In the one-dimensional system the volume
of the new phase, i.e., the number of the isolated individuals, increases with time as Z� t3. For a large number
of possible communities, the critical density of filled space is equal to �c= �m /N�1/3, where N is the system size.
A similar transition is observed for Erdős-Rényi random graphs and Barabási-Albert scale-free networks.
Analytical results are in agreement with numerical simulations.
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Recently, physicists working on modeling of social phe-
nomena are frequently touching the idea of dissemination
and competition—especially in the case of language �1�, cul-
ture �2�, and opinions �3�. The key subject can be posed as
follows: how does the node internal variable change when it
is influenced by others? The issue has occurred especially in
the Axelrod model of culture dissemination �2� or many so-
ciophysics systems such as Sznajd model �4�, voter model
�5�, majority rule voting �6�, social impact model �7�, or
bounded confidence models �8�. At this moment one should
stress that the above-mentioned models are bound to explore
social effects of diffusion or adoption of node states. Such
processes are usually running in accordance with the follow-
ing scheme: one takes the state of its neighbor, provided that
a set of rules is fulfilled.

There is however also another qualitatively different
phenomenon—isolation of surrounded social groups and re-
sulted extinction of their members due to lack of communi-
cation with other groups of the same specie. In fact this issue
should be regarded as equally important as the previously
mentioned dissemination or migration effects. The isolation
and consequently the lack of communication among the
groups belonging to the same community �and vice versa, no
communication causing the isolation� might lead to severe
disturbances in the society. One of them can be racial isola-
tion �segregation� that can cause serious social problems �9�.
In fact the phenomenon of residential segregation has been
studied in several physical papers �10� that in part follow the
famous work of Schelling �11� or other Ising-like ap-
proaches. In other situations the lack of social contact results
in an increased mortality of seriously ill patients as compared
to those that are not isolated �12�. Finally, recent research
�13� shows that Americans suffer from social isolation due to
a dramatic decrease in the number of discussion partners
even with those whom they share the closest relationship
with. Given the fact that such social phenomena as elections
�14� or war �15� are currently being examined using methods
of statistical physics, a quantitative model of social isolation
could be a useful tool to predict blocking of voting districts
or trapping of hostile troops during wartime.

In this paper we propose an evolving model to investigate
the question of the critical density that has to be reached in
order for a certain phenomenon to happen. In fact when such

a system as the Roman empire did not collapse in a single
Barbarian struck, it was rather transformed during a slow
decline of culture and knowledge that happened in the course
of migration period and resulting separation of various parts
of west and east empires �16�. One needs to stress that in
many cases an isolated specie does not belong anymore to
either of the community present in the system. The described
situation can be spotted in such problems as urbanization,
spanning of the suburbs �i.e., suburbanization� �17�, or cur-
rently vital problems of immigrant offspring identity �18�.
Our model is aimed to give some general descriptions of the
critical phenomena that can occur in such circumstances.

The key idea of our work can be presented in form of two
questions: �i� what happens if instead of species spreading
the interaction results in species isolation and extinction? �ii�
What are the consequences of the fact that sometimes a small
group is capable to surround and defeat a larger one? The
first point comes as a result of the observation that a group of
people that are suddenly surrounded by people from opposite
groups is often defeated by enemies or opponents. It occurs
because the surrounded group is isolated and is not able to
communicate with other group members who could support
them, e.g., to provide a military backup �it was a common
case during many wars�. To justify the second question, one
can think of the Chinese game Go where, in some condition,
one player can block the opponent using the amount of
stones, which is less than those that are just being sur-
rounded.

In this paper we impose these dynamical rules onto vari-
ous regular and random networks. We start with a simple
chain where sites are being filled with individuals belonging
to two different species. Then, we extend the model to a case
of m different species and finally we consider the Erdős-
Rényi �ER� graphs and Barabási-Albert �BA� scale-free net-
works.

Let us consider a chain of N initially unoccupied nodes. In
each time step one empty node is chosen randomly. Then, an
internal variable �↑ � or �↓ � for this node is randomly se-
lected. Both possibilities correspond to different species or
communities and are drawn with the same probability. If a
cluster of n identical filled nodes �e.g., ↑↑ ↑↑� is surrounded
by individuals belonging to other community �e.g.,
↓↑ ↑ ↑ ↑↓�, the nodes in the surrounded cluster are treated as
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extinct and can no longer interact with the rest of the chain,
i.e., they will not be able to surround other clusters. The
procedure is held until the chain is full, which happens in the
Nth time step. An example of the complete evolution of the
system is presented in Fig. 1. Our main points of interest are
�i� the critical time tc when the first isolated cluster appears
and �ii� the number of isolated nodes for t� tc.

Figure 2�a� shows the number of isolated nodes Z and the
number of nonisolated nodes of both species �t−Z� /2 as
functions of time for four different chain sizes: 103, 104, 105,
and 106. In each case the number of isolated sites follows a
power law Z� t� with � exponent close to 3.0 ��=3.09 for
N=103, �=3.06 for N=104, �=3.05 for N=105, and
�=3.04 for N=106�. Each simulation was repeated 10 000
times and the results were averaged—this procedure applies
to all plots presented in this paper.

The plots indicate that in this system we observe a non-
equilibrium phase transition—after reaching a certain time of
the evolution �after filling a specific number of nodes�, a new
phase emerges due to the occurrence of the first isolated
cluster. The volume of this phase can be treated as the system
order parameter. It grows up when one runs above the critical
time tc. Moreover, it can be seen in Fig. 3�a� that data for
different chain sizes collapse onto one curve after rescaling
both the Z and the t axes by the system size N. Figure 3�b�
shows that the critical time tc of the first isolated node ap-
pearance grows with system size as tc�N�, where
�=0.664�0.001.

In order to obtain the average number of isolated nodes,
we have to sum all different possibilities of a cluster to be-
come isolated. A single isolated site emerges either as a re-
sult of a combination ↑↓↑ or ↓↑↓ in which the middle node
is turned into the isolated one. To express the total number of
such nodes in the system �Z1�, we need to multiply the prob-
ability of the sum of those combinations by the number of
such possibilities, that is, N−2. Similarly, the number of iso-
lated sites coming from isolated clusters of size n is

Zn = n�N − n − 1�

��Prob2�↑��
i=1

i=n

Prob�↓� + Prob2�↓��
i=1

i=n

Prob�↑�� ,

�1�

where n=1,2 , . . .. As the examined system is symmetric �i.e.,
Prob�↑ �=Prob�↓ ��, taking into account that at time t there
are already Z isolated nodes, the average probability of find-
ing a certain specie at time t is �t−Z� / �2N�. Since
Z=	i=1

i=nZi, we obtain after short algebra

Z = 2	
n=3

n=	

�n − 2��N − n + 1�
 t − Z

2N
�n

�2�

or Z= �t−Z�3 / �2N− t+Z�2. Solving this equation leads to

FIG. 1. �Color online� An example of evolution in the chain
consisting of eight nodes. Open circles are empty sites; black and
gray circles correspond to different communities. Isolated nodes are
marked with a cross.

FIG. 2. �Color online� �a� Number of isolated nodes �Z, dotted
and dashed lines� and not isolated nodes of each specie ��t−Z� /2,
solid lines� versus time for different chain sizes N �gray dotted line,
103; black dotted line, 104; gray dashed line, 105; and black dashed
line, 106�. �b� Number of isolated nodes �Z, filled symbols� and not
isolated nodes of each specie ��t−Z� /m, open symbols� versus time
for different number of species m �circles, m=4; squares, m=16;
and triangles, m=64�. All simulations are for N=104 and the lines
come form the solution of Eq. �5�.

FIG. 3. �Color online� �a� Data collapse for rescaled number of isolated nodes �Z /N� versus the rescaled time �t /N� observed for three
different data sets: N=104 �circles�, N=105 �triangles�, and N=106 �squares�. The curve �hardly visible� is obtained from Eq. �3�. �b� The
critical value of time tc for m=2 versus the chain size N. The line is Eq. �4� while triangles are numerical simulations. �c� The critical value
of time tc versus the number of species m for different chain sizes N=103 �circles�, N=104 �triangles�, and N=105 �squares�. Lines come
from Eq. �6�.
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Zr = 1
6 �5tr − 4 + �8 + 16tr − tr

2�ur
−1 − ur� �3�

with ur= ��3�16−24tr+39tr
2−2tr

3�−80+84tr−24tr
2�1/3, where

tr= t /N and Zr=Z /N. The formula is universal for any value
of chain size—all data should collapse on this curve, as can
be seen in Fig. 3�a�. If Z
 t
N, which is acceptable for the
most part of the evolution, then Eq. �2� leads to
Z t3 / �4N2�, i.e., the number of isolated nodes should in-
crease as t3. This fact is in agreement with the numerical
experiment. This approximated formula can be also used to
calculate the critical time tc at which the first isolated node
appears in the chain. Putting Z=1 we get a simple expression
for the critical time

tc = �2N�2/3. �4�

This result is consistent with the value of the � parameter
observed in the numerical data.

We can easily extend the previously described model of
two competing species onto a case where the number of spe-
cies is m�2. Similarly to the two-species case, in each time
step a type of specie is drawn from the uniform distribution
�1,m� and placed in a random unoccupied place in the chain.
The isolated nodes are formed from a cluster of identical
species surrounded by other identical species.

An example of the evolution of the extended model is
presented in Fig. 2�b�. Like in the case of m=2, the number
of isolated nodes follows a power law Z� t� with � exponent
close to 3 ��=3.05 for m=4, �=3.00 for m=16, and
�=3.01 for m=64�.

The analytical approach in the case m�2 is identical to
the case m=2 except for two things. First, there are m dif-
ferent species which can be isolated. Each of those m species
can be isolated in m−1 ways; therefore, instead of the factor
2 we should put m�m−1� in front of each equation in the set
of equations �1�. Second, larger number of species results in
the change in probability of finding a specific specie—in the
extended model, it is equal to �t−Z� / �mN�. Thus Eq. �1� has
now the form

Zn = nm�m − 1��N − n − 1�
 t − Z

mN
�n+2

, �5�

where n=1,2 , . . .. Following an identical algebra as
in the case of the two-species model, we arrive at a
self-consistent equation for the number of isolated nodes
Z= �m−1��t−Z�3 / �mN− t+Z�2, which is exactly algebraically
solvable. The solution fits to the numerical data quite well
�see Fig. 2�b�� and as before one can approximate it with
Z��m−1�t3� / �m2N2�. This proves that the increase in iso-
lated nodes follows the same rule as in the two-specie case,
i.e., t3. The critical time tc at which the first isolated node
appears is

tc = 
 m2

m − 1
�1/3

N2/3, �6�

which, once again, is consistent with the numerical data �see
Fig. 3�c��.

The form of Eq. �6� gives us the opportunity to spot the
interplay between the only two parameters of the model: the

length of the chain N and the number of species m. If
m1, Eq. �6� can be rewritten in a form of tc= �mN2�1/3,
which leads to the critical density of filled nodes
�c= �m /N�1/3. The obvious conclusion from this relation is
that when the chain becomes larger the critical density gets
smaller and in the thermodynamical limit vanishes com-
pletely. Then, if we would like to maintain a constant value
of �c we should require m /N=const. In other words, it is
possible to prevent the convergence of the critical density to
zero by making the number of species proportional to the
chain’s length.

The critical time tc for m=2 can be also found in the cases
of two- and three-dimensional cubic lattices and, what is
more important, for any random network characterized with
a specific degree probability distribution p�k� �k is the num-
ber of links of a given node�. The general formula for the
number of single isolated nodes is

Z1 = 2N	
k=0

k=	

p�k�xk+1, �7�

where x= t / �2N�. In order to obtain the critical time, we re-
quire that Z1=1 and solve this equation for t. In case of
regular lattices we have tc= �2N�z/�z+1�, where z is the number
of neighbors. We have calculated the critical time for the two
most popular types of complex networks: Erdős-Rényi ran-
dom graphs �19� and Barabási-Albert scale-free networks
�20�. In case of ER graphs characterized by the degree dis-
tribution p�k�=e−�k��k�k /k!, the critical time tER can be ex-
pressed as

tER =
2N

�k�
W
 e�k��k�

2N
� , �8�

where W�x� is the Lambert W function. For BA network
�degree distribution p�k�= 1

2 �k�2k−3�, we get

FIG. 4. �Color online� Logarithmic plot of the critical time tc for
Erdős-Rényi graphs �empty symbols� and Barabási-Albert networks
�full symbols� for different networks sizes: N=103 �circles�,
N=104 �triangles�, and N=105 �squares�. Symbols are numerical
simulations and lines come from Eqs. �8� and �9�. The inset shows
tc in linear scale for N=105 in case of ER graph �triangles� and BA
network �squares�; tc is rescaled by a factor of 10 000.
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tBA  
�k�
4
�2/��k�+2�

�2N��k�/��k�+2�. �9�

The obvious condition for avoiding an isolated node in
the system is tc�N. It leads to the following inequalities
for different networks: N�2z for regular lattices,
N�2��k�−4�/2�k� for BA networks, and N�e�k�/2 for ER
graphs. The above described results are shown in Fig. 4.

In this work we proposed a simple approach to model
community isolations in growing societies. The numerical
simulations fully supported by the analytical approach show
that at a critical time tc a nonequilibrium phase transition
takes place and a new phase consisting of surrounded clus-
ters emerges. In the case of one-dimensional system, the

number of isolated nodes rises with time as a power law with
exponent �=3. The scaling is universal, i.e., it depends nei-
ther on the chain’s length N nor on the number m of possible
species. An analytical form for the critical time tc is found
and for large m this time scales as tc= �mN2�1/3. The phenom-
enon has been also observed for higher-dimensional systems
as well as for Erdős-Rényi random graphs and Barabási-
Albert scale-free networks.

J.S. and J.A.H. acknowledge support from the EU Grant
“Measuring and Modeling Complex Networks Across
Domains”—MMCOMNET �Grant No. FP6-2003-NEST-
Path-012999� and from Polish Ministry of Education Science
�Grant No. 13/6.PR UE/2005/7�. J.S. is thankful to Axel
Leijonhufvud for useful comments.

�1� Ch. Schulze and D. Stauffer, Modeling Cooperative Behavior
in the Social Sciences, AIP Conf. Proc. No. 779 �AIP, New
York, 2005�, p. 49; X. Castelló, V. M. Eguíluz, and M. San
Miguel, New J. Phys. 8, 308 �2006�; M. A. Nowak, N. L.
Komarova, and P. Niyogi, Nature �London� 417, 611 �2002�.

�2� R. Axelrod, J. Conflict Resolut. 41, 203 �1997�.
�3� C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys.

81, 591 �2009�.
�4� K. Sznajd-Weron and J. Sznajd, Int. J. Mod. Phys. C 11, 1157

�2000�; F. Slanina and H. Lavicka, Eur. Phys. J. B 35, 279
�2003�.

�5� C. Castellano, V. Loreto, A. Barrat, F. Cecconi, and D. Parisi,
Phys. Rev. E 71, 066107 �2005�; K. Suchecki, V. M. Eguíluz,
and M. San Miguel, EPL 69, 228 �2005�.

�6� S. Galam, Physica A 285, 66 �2000�; P. L. Krapivsky and S.
Redner, Phys. Rev. Lett. 90, 238701 �2003�; R. Lambiotte, M.
Ausloos, and J. A. Hołyst, Phys. Rev E 75, 030101�R� �2007�.

�7� K. Kacperski and J. A. Hołyst, Physica A 269, 511 �1999�; J.
A. Hołyst, K. Kacperski, and F. Schweitzer, ibid. 285, 199
�2000�; K. Kacperski and J. A. Hołyst, ibid. 287, 631 �2000�.

�8� G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, Adv.
Complex Syst. 3, 87 �2000�; R. Hegselmann and U. Krause, J.
Artif. Soc. Soc. Simul. 5�3� �2002�.

�9� E. S. Shihadeh and N. Flynn, Soc. Forces 74, 1325 �1996�.
�10� H. Meyer-Ortmanns, Int. J. Mod. Phys. C 14, 311 �2003�; C.

Schulze, ibid. 16, 351 �2005�; D. Stauffer and S. Solomon,
Eur. Phys. J. B 57, 473 �2007�; L. Dall’Asta, C. Castellano,
and M. Marsili, J. Stat. Mech.: Theory Exp. �2008�, L07002;
G. Ódor, Int. J. Mod. Phys. C 19, 393 �2008�.

�11� T. C. Schelling, J. Math. Sociol. 1, 143 �1971�.
�12� B. H. Brummett, Psychosom. Med. 63, 267 �2001�.
�13� M. McPherson, L. Smith-Lovin, and M. E. Brashears, Am.

Sociol. Rev. 71, 353 �2006�.
�14� S. Fortunato and C. Castellano, Phys. Rev. Lett. 99, 138701

�2007�; M. A. Porter, P. J. Mucha, M. E. J. Newman, and A. J.
Friend, Physica A 386, 414 �2007�.

�15� L. Cederman, Am. Polit. Sci. Rev. 97, 135 �2003�; N. J.
Johnson, in Managing Complexity: Insights, Concepts, Appli-
cations, edited by D. Helbing �Springer-Verlag, Berlin, 2008�.

�16� E. Gibbon, in History of the Decline and Fall of the Roman
Empire, edited by H.-F. Mueller �Modern Library, New York,
2005�.

�17� R. E. Adams, J. Comp. Psychol. 20, 353 �1992�.
�18� M. Zhou, Annu. Rev. Sociol. 23, 63 �1997�.
�19� P. Erdős and A. Rényi, Publ. Math. �Debrecen� 6, 290 �1959�.
�20� R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 �2002�.

JULIAN SIENKIEWICZ AND JANUSZ A. HOŁYST PHYSICAL REVIEW E 80, 036103 �2009�

036103-4


