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a b s t r a c t

In this paper we analyzed dependencies in commodity markets, investigating correlations
of future contracts for commodities over the period 1998.09.01–2007.12.14. We
constructed a minimal spanning tree based on the correlation matrix. The tree provides
evidence for sector clusterization of investigated contracts. We also studied dynamical
properties of commodity dependencies. It turned out that the market was constantly
gettingmore correlatedwithin the investigated period, although the increase of correlation
was distributed non-uniformly among all contracts, and depended on contracts branches.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Commodity markets are, in their origins, the prime and the most basic markets rooted in times when people were
exchanging goods even before money was invented. Today’s commodity markets are mature and highly developed
institutions, playing a very important role in the modern economy. They are not only places of goods exchange, but also
a theater of speculative activity.
Nowadays, when we are used to highly sophisticated financial instruments, including credit derivatives, contracts for

other contracts for some artificial underlying instruments etc., commodities seem to be rather old-fashioned. Yet, they
remain important, not only due to their being primary rawmaterials for other stages of economic activity, but also because
they can be a reliable measure of value, especially in times of crisis or other historical turbulence.
Commodities, traded at free markets, follow the rules of the efficient market hypothesis [1], the same as stocks,

currencies, and others. Changes of their prices are, therefore, random and in large part unpredictable. Amodel which reflects
this property is the geometric Brownian motion of prices, the core of the Black–Scholes theory [2]. However, real prices of
financial assets deviate from the Brownian behavior, which has been clearly shown by investigations using different tools of
econophysics. The autocorrelation function of the absolute returns, decays as a power law with an exponent −0.3 [3]. The
returns are weakly correlated [2,4] and show persistent behavior of their sign [5,6]. All those observations for stock markets
should also be, in general, valid for commodity markets, despite observed differences such as a spatial arbitrage effect [7],
or different multifractal properties [8]. Matia et al. [9] also showed that the prices of commodity futures obey a different
scaling law from the prices of spots. The former are more similar to stocks in this aspect.
It is well known that stocks of different firms are mutually correlated in a way that cannot be totally explained by the

randommatrix theory [10–13]. The correlation coefficients of stock price returns can be used to obtain a minimal spanning
tree and, associated with it, a hierarchical tree of the subdominant ultrametric space, which was done by Mantegna [14].

∗ Corresponding author. Tel.: +48 22 2347133; fax: +48 22 628 2171.
E-mail addresses: psieczka@if.pw.edu.pl (P. Sieczka), jholyst@if.pw.edu.pl (J.A. Hołyst).

0378-4371/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2009.01.004

http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:psieczka@if.pw.edu.pl
mailto:jholyst@if.pw.edu.pl
http://dx.doi.org/10.1016/j.physa.2009.01.004


1622 P. Sieczka, J.A. Hołyst / Physica A 388 (2009) 1621–1630

Table 1
List of investigated future contracts for commodities in the alphabetical order of their symbol.

Symbol Name Market Symbol Name Market

AA_F Aluminum alloy LME MW.F Wheat spring MGEX
AL_F Aluminum LME NG.F Natural gas NYMEX
BO.F Soybean oil CBOT NI_F nickel LME
C.F Corn CBOT OJ.F Orange juice NYBOT
CC.F Cocoa NYBOT PA.F Palladium NYMEX
CL.F Crude oil NYMEX PB.F Pork bellies CME
CO_F Copper LME PL.F Platinum NYMEX
CT.F Cotton NYBOT RR.F Rough rice CBOT
FC.F Feeder cattle CME RS.F Canola WCE
GC.F Gold NYMEX S.F Soybean CBOT
HG.F Copper NYMEX SB.F Sugar NYBOT
HO.F Heating oil NYMEX SC.F Brent oil ICE
KC.F Coffee NYBOT SI.F Silver NYMEX
KW.F Wheat KCBT SM.F Soybean meal CBOT
LB.F Lumber CME TI_F Tin LME
LC.F Live cattle CME W.F Wheat CBOT
LE_F Lead LME ZI_F Zinc LME
LH.F Lean hogs CME

He detected grouping of firms of a similar profile in the minimal spanning tree. This effect can be reproduced neither by the
randommodel of uncorrelated time series, nor by the one-factor model [15].
In this paper, we analyzed cross-correlations in commodity markets. We created the correlation matrix and correspond-

ing correlation-based metric. Using the correlation metric we created a minimal spanning tree of investigated contracts,
looking for sector clusterization. We also examined dynamic properties of correlations, finding out that commodity con-
tracts were getting more and more correlated, and mean distances in a corresponding minimal spanning tree were smaller
and smaller in the course of time. However, individual contracts contributed to the increase of mean correlation differently.
Their idiosyncratic contribution to the correlationswas characterized by an introduced quantity (strength) and its evolution.
Themotivation for our researchwas a growing interest of investors andmassmedia in commoditymarkets. Skyrocketing

oil prices were expected to reach the level of 200 USD per barrel during one week, and went down under 100 USD during
another. We wanted to investigate the behavior of the commodity markets with the tools of complex system physics. We
found the mirroring of the specific situation of the last years, in a time dependent picture of commodity prices correlations.

2. The data

We investigated 35 future contracts for commodities traded at different markets. Futures rather than spots were
examined, as the data were more accessible.
We used data from: Chicago Board of Trade (CBOT), ChicagoMercantile Exchange (CME), IntercontinentalExchange (ICE),

Kansas City Board of Trade (KCBT), LondonMetal Exchange (LME), Minneapolis Grain Exchange (MGEX), New York Board of
Trade (NYBOT), New York Mercantile Exchange (NYMEX), Winnipeg Commodity Exchange (WCE). For today’s investors in
the globalized world market, a contract traded in London or in Chicago is only another financial instrument that they can
buy or sell, no matter where.
Table 1 presents the list of investigated contracts, their symbols, and symbols of correspondingmarkets. All the contracts

were quoted in USD. We took day closing prices under consideration.

3. Correlations

Let Pi(t) be a day closing price of a contract i at time t . From logarithmic returns ri = log(Pi(t + 1)) − log(Pi(t)) we
calculated a Pearson correlation coefficient:

Cij =
〈rirj〉 − 〈ri〉〈rj〉√

(〈r2i 〉 − 〈ri〉2)(〈r
2
j 〉 − 〈rj〉2)

. (1)

The correlation coefficients Cij were computed for all pairs of futures from Table 1 over a span between 1998.09.01 and
2007.12.14. The average 〈. . .〉 was calculated for the whole period, but only for days when all the contracts were traded.
There were T = 2190 overlapping records in the mentioned period.
One could expect that due to long (compared to a number of assets) time series, the correlation matrix would have a low

level of noise. According to the random matrix theory (RMT) [10], the eigenvalues spectra of a correlation matrix for N un-
correlated Gaussian time series of the length T is bounded by amaximum λmax and aminimum λmin value, which is equal to:

λmaxmin = 1+
1
Q
± 2

√
1
Q
, (2)
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Fig. 1. Eigenvalues of the correlation matrix. The gray rectangle corresponds to the area of a randommatrix.

Fig. 2. Two eigenvectors corresponding to the two largest eigenvalues of the correlation matrix. Each point can be identified as a contribution of a certain
contract to an eigenvector.

where Q = T/N . In our case, Q ≈ 62.57 and λmin ≈ 0.76, λmax ≈ 1.27. In Fig. 1 the eigenvalue spectrum is presented. The
majority of the eigenvalues lies outside the RMT region.
Plotting components of two eigenvectors corresponding to the two largest eigenvalues shows a clustering structure of the

correlationmatrix [16]. Assets of specific sectors depend on common factors in a similar way and give a similar contribution
to the eigenvectors (Fig. 2).
Following Mantegna [14], we computed a metric distance matrix,

dij =
√
2(1− Cij). (3)

The function dij is awell-definedmetricmeasure. Itmeasures a distance between two time series that is, in our case, between
returns of two commodity futures. The closer they lie in the sense of the metric, the more correlated they are.
The distance matrix dij determines a weighted, fully connected graph of correlation distances. Being symmetric, it has

N(N − 1) independent elements, and so does the correlation matrix Cij.
For a weighted network associated with dij, we can create a minimal spanning tree (MST). A spanning tree of a weighted

graph G is a tree that contains all vertices of G, and links of the tree are a subset of the links of G. A minimal spanning tree of
a graph G has the lowest sum of weights among all spanning trees of G. A MST of the distance matrix dij has N − 1 links. It
pictures only the most important interactions, and hence is a useful tool for correlation visualization.
We calculated node strength defined as:

Si =
∑
j6=i

1
dij
. (4)

We also created a MST based on the metric distance using Prim’s algorithm [17]. Fig. 3 presents the MST with weights
corresponding to distances between given nodes, and a node radius proportional to their strength. We used colors to
distinguish different branches: metals with yellow, fuels with red, plant products with green, and animals with brown.
The sector clusterization is clearly visible. We can identify connected subgraphs of specific profiles: metals (containing all
listed metals), fuels (CL.F, SC.F, HO.F, NG.F), grains (S.F, C.F, W.F, KW.F, MW.F, RR.F, BO.F, RS.F, SM.F), animals (LB.F, PB.F,
FC.F, LC.F), plant products (CC.F, KC.F, SB.F, LB.F) and outsiders (OJ.F, CT.F). One can also observe market clusterization, for
example all metals from LME form a connected subgraph.
To find out the importance of a vertex in a graph, different measures can be used. One of them is node strength (4),

which informs how much a given vertex is correlated with the others. Another is a node degree, defined as a number of
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Fig. 3. (Color online) MST composed of 35 future contracts from Table 1 with corresponding weights. For a given node, its radius is proportional to its
strength. Color denotes the branch: yellow—metals, red—fuels, green—plants, brown—animals.

Table 2
Degree, strength, and betweenness of future contracts in the period 1998.09.01–2007.12.14.

Symbol Deg. Strength Betw. Symbol Deg. Strength Betw.

AA_F 1 26.42 0 MW.F 1 27.13 0
AL_F 2 27.42 0.06 NG.F 1 24.91 0
BO.F 2 26.79 0.06 NI_F 1 26.08 0
C.F 2 26.73 0.16 OJ.F 1 24.38 0
CC.F 3 24.59 0.17 PA.F 1 25.54 0
CL.F 3 27.50 0.17 PB.F 1 24.46 0
CO_F 5 27.62 0.37 PL.F 2 25.65 0.06
CT.F 1 25.02 0 RR.F 1 24.84 0
FC.F 2 24.41 0.06 RS.F 1 26.18 0
GC.F 4 26.43 0.48 S.F 6 27.70 0.59
HG.F 2 26.54 0.37 SB.F 1 24.90 0
HO.F 2 26.86 0.06 SC.F 1 27.40 0
KC.F 2 24.87 0.06 SI.F 3 26.66 0.67
KW.F 2 27.26 0.06 SM.F 2 26.85 0.21
LB.F 1 24.26 0 TI_F 2 25.78 0.06
LC.F 1 24.71 0 W.F 2 27.32 0.11
LE_F 1 26.16 0 ZI_F 2 27.18 0.06
LH.F 2 24.68 0.17

links attached to a given node, or betweenness centrality, which is defined as [18]:

B(i) =
∑
(j,l)

σjl(i)
σjl

, (5)

where σjl is the number of the shortest paths going from j to l and σjl(i) is the number of the shortest paths from j to l passing
through i. The sum is over indices j, l fulfilling the condition: i 6= j 6= l 6= i.
For the minimal spanning tree (Fig. 3), treated as an unweighted graph, we computed betweenness centrality of each

node, its strength and degree (Table 2). The vertices with highest degrees are: SO.F 6, CO_F 5, GC.F 4. The strongest are: S.F
27.7, CO_F 27.62, CL.F 27.50, and the most between: SI.F 0.67, S.F 0.59, GC.F 0.48.

4. Time evolution

Choosing a time window ∆T for correlations calculation is always a compromise choice between a level of noise from
one side and a good estimation of temporal correlation from the other. Increasing ∆T reduces the noise level, but it gives
an average correlation coefficient of the whole window. The correlation coefficients evolve in time, and the corresponding
MST shrinks during a stock market crisis [19]. Some dynamical aspects of correlations were investigated in Refs. [20,21].
We divided the period 1998.09.01–2007.12.14 into three subperiods of equal lengths and created MST for this data, also

computing strengths of the contracts (Figs. 4–6). The tree changed, but branch clusterization remained.
A change in strength of the strongest nodes is presented in Fig. 7. To check whether the change is caused by a real trend,

and not by fluctuations, we recalculated the strength for the same time window starting 7 days earlier, and 7 days later.
The results, providing the scope of the strength change, enabled us to include error bars in Fig. 7. The error bars appeared to
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Fig. 4. (Color online) MST with weights and none strengths for the period 1989.01.03–2001.05.10.

Fig. 5. (Color online) MST with weights and none strengths for the period 1989.01.03–2001.05.10.

Fig. 6. (Color online) MST with weights and none strengths for the period 2004.11.08–2007.12.14.

be negligible compared to the change of the strength. It means that while shifting the time window by 7 days, the strength
remained almost unchanged. All presented contracts increased their strengths, especially gold whose increase was most
abrupt.
A more detailed view on the strength evolution can be obtained by applying a moving time window analysis. We

calculated strengths of contracts for a time window ∆T = 1000 (Fig. 8). Contracts of the same branch obey similar
changes. Except for animal products, which did not change significantly, all contracts increased their strengths within the
investigated period. Also the shape of the evolution curve proves that the observed change is the effect of real trend rather
than fluctuations.
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Fig. 7. (Color online) Change in strength of the strongest contracts with error bars included. The most noticeable is the increase of gold strength.

Fig. 8. (Color online) Evolution of the strength parameter of selected contracts for a time window∆T = 1000.

We also calculated betweenness centrality for each tree treated as an unweighted network (Fig. 9). One can observe a
monotonic betweenness decrease of corn, copper, soybean, and an increase of gold betweenness. There can also be observed
an abrupt increase of crude oil betweenness.
The change in the picture of correlations can be caused by noise fluctuation or by a real evolution of market trends.

Because our time series are long, compared to their numbers (T � N), we suspect that we observed a trend evolution
rather than fluctuations.
We investigated the evolution of the mean correlation,

C̄T (t) =
2

N(N − 1)

∑
i<j

CTij (t), (6)

where CTij (t) is a correlation coefficient for a time window [t − ∆T , t]. A constant upgoing trend is visible (Fig. 10). Its
interpretation is quite obvious — the mean correlation increased significantly in the investigated period. We also calculated
the variance of the correlation coefficients:

σ 2C =
2

N(N − 1)

∑
i<j

(CTij (t)− C̄
T (t))2. (7)

It is usually positively correlated with the mean correlation [22].
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Fig. 9. (Color online) Betweenness of future contracts for three subperiods. Contracts that had betweenness 0 during all three subperiods are skipped in
this picture.

Fig. 10. Mean correlation (C̄T (t)) and variance σC of 35 contracts for∆T = 1000 and period 1998.09.01–2007.12.14. Because it requires 1000 records to
calculate C̄T (t) for a given window∆T = 1000, the figure begins with the end of the year 2002. On the horizontal axis t = 2003, 2004, . . .means the first
(trading) day of a year.

Fig. 11. Mean correlation (C̄T (t)) and variance σ 2C of 27 contracts for∆T = 1000 and longer period 1990.04.03–2007.12.14.

During financial crashes, a growth of the mean correlation can be observed [22]. We can see in the investigated period
a constant growth of C̄(t). We calculated C̄T (t) and σ 2C for a longer period, i.e. 1990.04.03–2007.12.14 with a smaller set of
contracts (Fig. 11). We used only 27 contracts that had been traded through the whole period. The mean correlation was
fluctuating between 0.06 and 0.07 until the year 2003. Next, it started a constant growth to the value 0.14 at the end of
2007.
Let us define the mean occupation layer [22]:

L =
1
N

∑
i

l(vi), (8)

where l(vi) denotes the level of vertex i. The level measures the distance (in nodes) to the central vertex (which is of level 0).
Each time we chose as the central vertex one that minimizes the mean occupation layer L. This measure characterizes
compactness ofMST, which usually shrinks during abrupt price changes (e.g. crisis). This effect can be observed as a decrease
of the L value. Evolution of mean occupation layer L is presented in Fig. 12. One can see large fluctuations of both values. No
constant trend can be found. Both values are correlated with the correlation coefficient ρ = 0.53.
The arbitrage pricing theory [23,24] models returns of financial assets as a linear function of different macro-economic

factors. Such factors can be identified with eigenvectors of a correlation matrix. The largest eigenvector corresponds to
an economic factor which has the most significant impact on the market. The level of this impact can be measured by a
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Fig. 12. (Color online) The mean occupation layer L35 for all 35 contracts, and L27 for a reduced sample of contracts in a longer period. The data of L35 for
better visibility were shifted upwards by an additive constant equal to 1. The values were computed for the time window∆T = 1000.

Fig. 13. Evolution of the largest eigenvalue normalized by the sum of all eigenvalues for a moving time window∆T = 1000.

corresponding eigenvalue normalized by the sum of all eigenvalues. If we take a portfolio of contracts which is a mixture
of eigenvectors with equal weights, this value would present the fraction of portfolio variance explained by the first factor.
The evolution of normalized largest eigenvalue is presented in Fig. 13. The observed increase means that the influence of
the first factor became even stronger with time, which caused the observed increase of the mean correlation (Fig. 10).
We plotted evolution of the first eigenvector components (Fig. 14) which can be treated as an influence of the first

factor on a given commodity. It strongly decreased for plant products, increased for metals and fuels, and remained almost
unchanged for animals. While growing influence of the first factor resulted in the increase of mean correlation, changes
of eigenvector components drove the evolution of strength parameters. It seems to be clear for metals, fuels and animals.
However, for the case of plants, we observed a decrease of first eigenvector components. At the same time, the largest
eigenvalue increased. The two opposite tendencies resulted in a slight increase of strengths of plants.

5. Discussion and conclusions

We analyzed the correlation matrix of commodity prices. Due to long time series, the level of noise in correlation matrix
was low. Two eigenvectors of Cij, corresponding to the largest eigenvalues were plotted. The picture Fig. 2 visualizes a
clustering structure of correlations. Using a correlation metric dij we created MST of investigated contracts. MST provides
clear evidence for the existence of strong correlations of commodities within a given sector and for inter-sector correlations,
depending on the level of similarity.
The abovepicture of correlations could be expected fromsimilar studies of stockmarkets and currencies.More interesting

are investigated dynamical properties of correlations which, as we observed, changed in time. In the studied period
(i.e. 1998.09.01–2007.12.14) themean correlation (6) increased fromabout 0.08 to about 0.13. The reason for this correlation
increase can be as follows. Commoditymarkets attracted a lot of investors’ attention in the last years. A growing demand for
energy, metals, and food from fast developing Chinese and Indian economy created a boom for commodities and an impulse
for intensive speculations. This market boommakes prices follow one direction, which resulted in an increase of correlation
between the traded assets. A similar effect was observed duringmarket crashes [19]. The effect of the boom for commodities
is responsible for the observed growth of mean correlation coefficient.
The mean correlation calculated as an average measure increased, but the contributions of individual contracts to this

difference were various. We introduced strength of a contract expressing the magnitude of its correlation with other
contracts. Strengths calculation formoving timewindowvisualized the evolution of this parameter. It turned out thatmetals
and fuels participated significantly in the increase of strength, while animals almost remained unchanged.
It is obvious that prices of financial assets are drivenby several economic factors. Among them there is themost significant

factor, which we call the first factor. A measure of importance of the factor can be a corresponding eigenvalue. We showed
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Fig. 14. (Color online) Contribution of selected contracts to the eigenvector corresponding to the largest eigenvalue which is normalized to unity
(∆T = 1000).

that the role of the first factor was getting stronger, so the market finally became more and more one-factored. This fact,
that can be observed in the increase of the first eigenvalue, is also responsible for the increase of correlations, characterized
by the mean correlation parameter. That effect was caused by a growing price bubble.
We also observed the change of the first factor itself, or from the other viewpoint, the change of its influence on specific

commodities. The first eigenvector components evolved in time, in a way that depends on the commodity branch. Contracts
which became significantly more dependent on the first factor, that is metals and fuels, also became stronger. Contracts
with weak interactions with the first factor, like animals, did not change their relatively low strengths.
We studied correlations of commodity contracts returns. Our analysis showed that, starting from the year 2003, the

commodity market became more correlated, and was driven by a single economic factor. The dependence on the factor
became stronger with time. The result is most pronounced in an evolution of the largest eigenvalue, normalized by the sum
of all eigenvalues, and it can also be seen in the evolution of contracts strengths and their mean correlation.
The most important result seems to be the clear evidence of the constantly increasing market synchronization. This fact

can even be related to the global scale of current economic crisis. However, the authors cannot suggest that they found the
roots of recent dramatic market changes.
It was expected that dynamics of commodities belonging to the same sector would be clustered, i.e. would be closely

placed in the MST. One could not, however, predict in advance which of the commodities would become synchronized with
the first eigenvalue (a market mode). It is surprising that the agriculture products behaved differently compared to metals
that became much more synchronized.
An obvious implication from our study is the increasing risk for market players that cannot effectively diversify their

portfolios, since corresponding assets are more and more correlated. It is well known that such correlations modify
substantially the optimal portfolios and make diversification more difficult, since the effective number of assets became
smaller [2].
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