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We proposed a model of interacting market agents based on the gener-

alized Ising spin model. The agents can take three actions: “buy”, “sell”, or

“stay inactive”. We defined a price evolution in terms of the system magne-

tization. The model reproduces main stylized facts of real markets such as:

fat-tailed distribution of returns and volatility clustering.

PACS numbers: 89.65.Gh

1. Introduction

Financial market modelling lies in the field of interests of both theoreticians
and practitioners. Among those who develop these models are also econophysicists.
A view on a financial market as a complex system of investors similar to complex
physical systems appeared to be very fruitful, since it allowed to reproduce many
characteristic features of such a market [1–4].

A special group constitutes approaches based on the Ising model [5–8] or
its generalization to a three-state model [9–11]. They identify agents with spin
variables which can take specific values depending on agents’ decisions. In much
the same way as the Ising spins, agents interact with each other, which leads to a
herding behavior and, as a consequence, bubbles or crashes. An important target
for such models is a reproduction of real market stylized facts such as fat-tailed
returns distribution, clustered volatility, or long range correlations of absolute
returns [12].

In this paper we proposed a simple model of financial markets, based on the
Granovetter threshold model of collective behavior, which is in good agreement
with the above facts.

2. Description of the model

An inspiration for our work was the Bornholdt model [13], corresponding to
the Ising spin model with an additional minority term, where agents act under the
influence of their neighbors (the Ising part) and a global magnetization. The local
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field for i-th spin in the Bornholdt model is defined as

hi =
N∑

j=1

Jijsj − αsi
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1
N

N∑

j=1

sj

∣∣∣∣∣∣
, (1)

with a global constant α > 0. The model interprets the price of an asset in terms
of the magnetization, which enables the authors to reproduce some stylized facts
of financial markets.

Here we developed a generalization of the Ising spin model that also uses the
absolute value of the magnetization as a factor controlling the dynamics.

Let us consider a model of N interacting market agents where each agent
takes one of three actions: “buy,” “sell,” or “stay inactive”. Such an agent can be
represented by a three-state spin variable si(t) taking values +1 when the agent
is buying, −1 when the agent is selling, and 0 in the remaining case.

The agents interact with each other according to an interaction matrix Jij .
In our model we assumed the interaction matrix corresponding to a 2-dimensional
squared lattice in which each agent interacts only with its four nearest neighbors
with an equal strength J . The interaction strength can be ferromagnetic (J > 0)
when investors try to act like their neighbors or antiferromagnetic (J < 0) when
they try to play against their neighbors. We chose the ferromagnetic case to
introduce the herding behavior.

At each time step t the agent i takes its value according to the following
formula:

si(t) = signλ|M(t−1)|




N∑

j=1

Jijsj(t− 1) + σηi(t)


 , (2)

where signq is a threshold signum function,

signq(x) =





1 if x > q,

0 if − q < x < q,

−1 if x < −q.

(3)

The function ηi(t) has random values from the Gaussian distribution with 0 mean
and variance equal to 1. The term σηi(t) simulates an individual erratic opinion
of the i-th investor and the parameter σ defines strength of individual opinions.

We define the magnetization of the network,

M(t) =
1
N

N∑

i=1

si(t), (4)

which together with a constant λ forms a threshold parameter q of the sign func-
tion. Let us notice that for λ = 0 our model is identical with the 2-valued Ising
spin model.

We simplified the procedure of price calculation presented in [13] by omitting
the influence of chartists and fundamentalists in the population of investors and
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redefining the price of an asset as

P (t) = P0(t)eM(t), (5)
where P0(t) is, in agreement with the efficient market hypothesis [14], a geometric
Brownian walk corresponding to fundamental price changes. Let us put P0(t) = P0

constant for more simplicity. We got therefore a logarithmic rate of return

r(t) = M(t)−M(t− 1). (6)
According to (2), each agent is under the influence of three factors. The

first is an imitation of their neighbors, associated with the matrix Jij which is
responsible for the herding behavior. The second factor is an individual opinion of
the agent provided by the term σηi(t). So far, it is the standard Ising model. Yet,
there is one more factor, λ|M(t−1)|, which plays the role of a threshold parameter.
Only those agents that are able to exceed the threshold are allowed to trade. The
value of the threshold depends on the absolute magnetization. According to (5),
the magnetization measures a deviation from the fundamental value. Therefore,
when it is large, the agents are afraid of trading, unless they have a strong support
from the neighbors or from their private opinions.

3. Results of the simulation

Using a square 32 × 32 lattice of agents with periodic boundary conditions
we computed the history of the magnetization, and thus the evolution of the stock
price. The agents were allowed to interact only with their nearest neighbors.

The simulation was started with a random configuration of spins. At each
time step a randomly chosen spin was updated according to the evolution Eq. (2)

Fig. 1. Returns r(t) in time t for parameters J = 1, σ = 1 and different λ.
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Fig. 2. Histogram of returns r16(t) for parameters J = 1, σ = 1 and different λ (left

picture), and for parameters J = 1, λ = 10, σ = 2, and σ = 0.5 (right picture).

and this was repeated N times. The first 5000 time steps were ignored as a period
of system thermalization.

We observed that for proper parameters price returns show volatility clus-
tering (Fig. 1) and fat tails (Fig. 2).

For real prices, fat tails of returns distribution (rτ (t) = log(P (t)/P (t− τ)))
are getting slimmer with rising time lag τ . Finally, the distribution became normal
for sufficiently large τ . In Fig. 3 we presented the distribution rτ (t) for diffe-
rent τ . The tails are slimming down with rising τ . The distribution has Gaussian
tails, although its shape is slightly different.

Fig. 3. Histogram of returns rτ (t) for parameters J = 1, σ = 1, λ = 10, and different

time lag τ . The returns were rescaled by the corresponding standard deviation σr.

The distributions were shifted upward with the factor 10, 100, 1000, . . . The normal

distribution was plotted with a dashed line.

Volatility clustering can be quantitatively shown using the autocorrelation
function of a time series x(t):
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Fig. 4. Autocorrelation function of return Cr(τ), obtained for parameters J = 1, σ = 1,

λ = 15.

Fig. 5. Autocorrelation function of absolute return C|r|(t), obtained for parameters

J = 1, σ = 1, λ = 15 in log–log scale, and in semi-log scale (inset).

Cx(τ) =
〈x(t)x(t− τ)〉 − 〈x(t)〉2

σ2
x

, (7)

where σx is the variance of x(t), and 〈. . .〉 means the average over t. We computed
the autocorrelation function of returns Cr(t) (Fig. 4) and the absolute value of
returns C|r|(t) (Fig. 5). The autocorrelation of returns decays very fast, which is
consistent with observations of real markets. It has also the same shape as the
distribution presented in [10]. The autocorrelation function of the absolute returns
is a slowly decaying exponential similar to the results of [13] and [10].

4. Conclusions

We proposed a simple model of financial markets based on the Granovetter
model. We introduced a threshold controlled by a magnetization of the system.
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This makes an agent take an action only if its confidence is strong enough to
overwhelm the threshold.

We defined a logarithmic rate of return as a change of the magnetization.
The model with such a defined price reproduces main stylized facts of financial
markets meaning a fat-tailed distribution of returns, volatility clustering, very fast
decaying autocorrelation of returns and much slower decay of autocorrelation of
absolute returns.

It has been observed for real markets that the distribution of returns rτ (t)
becomes Gaussian for large τ . The distribution of returns generated by our model
approaches the Gaussian distribution for rising τ , however its shape differs from
the normal distribution. The autocorrelation function of the absolute returns is
a slowly decaying exponential function, while the empirical study of the markets
reveals a power-law behavior. Both these issues can be considered as weaker points
of our model.
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