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Abstract. As the result of empirical investigations into the foreign exchange market a group structure of
characteristic periodic decisions of market participants is found. In order to explain this finding at the
microscopic level the agent-based model of a financial market in which N market participants trade M
financial commodities is considered. If different sources of periodic information exist then the relationship
among these characteristic periodic behaviors may be associated with a special structure where market
participants perceive such information in the foreign exchange market.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 87.15.Ya Fluctuations – 89.65.Gh
Economics; econophysics, financial markets, business and management – 89.75.Fb Structures and organi-
zation in complex systems

1 Introduction

A generic feature of many complex systems is the pres-
ence of collective periodic oscillations of their interact-
ing elements [1–12]. Such behavior is observed in vari-
ous phenomena studied in both the natural and social
sciences. Examples include not only well known collec-
tive excitations in crystals (phonons, magnons, charge-
density waves, etc.) [13] or coupled laser systems [14,15]
but also subsets of neurons in the striate and prestri-
ate cortex [16–18], Belousov-Zhabotinskii chemical oscil-
lators [19], flows of pedestrians and vehicles [20], social
group decisions [9], various market cycles [21], or even
log-periodic precursors of market crashes [22,23]. In order
to explain these oscillations several kinds of synchroniza-
tion mechanisms [1,2,24] and resonances have been intro-
duced [25,26]. One of these is a stochastic resonance that
occurs in nonlinear dynamical systems perturbed by noise
and a weak periodic signal [26], where a signal amplifica-
tion measure possesses a maximum by a nonzero value of
noise strength.

It is important to stress that collective periodic mo-
tions may bring us information about the hidden struc-
ture of a corresponding system. For example, observing
frequency and amplitudes of vibrations penetrating build-
ing constructions or machines, one can receive useful data
about changes in their inner structure, while measure-
ments of a spectrum of waves propagating in the ground
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allow us to model different Earth layers. Similarly, observ-
ing human brain waves makes it possible to infer percep-
tual cognitive states [27,28], wakefulness/sleep [29], and
so on.

In the article we discuss a method to infer the struc-
ture of a human organization from participant behavior.
Recently various human activities can be observed di-
rectly with high resolution, and collected data are stored
by computers due to the development of Information and
Communication Technology. Similarly, financial markets
are computerized from communication to transaction and
they can be observed at the microscopic level of human
activities. Since the structure of human organizations is
related to the pathways of communication, an unknown
structure of financial markets can be realized through an
interplay among the perceptions and actions of market
participants.

Recently it has become possible to investigate the be-
havior of human activities at the microscopic level by us-
ing the high-frequency data of financial markets, known as
tick data [30–32]. As a result it seems possible to establish
a theoretical concept about the relationship among indi-
viduals based on empiricism, and it is expected to bring
deep insights and understanding of human activities from
a scientific point of view.

The foreign exchange market is the largest financial
market worldwide. All market participants in the foreign
exchange market communicate through electronic broker-
ing systems and find other market participants who are
able to exchange currencies with them. The electronic
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brokering system collects quotations from the market par-
ticipants and broadcasts transaction information to the
market participants who attend this system. The market
participants perceive the information (market prices and
news) through computer terminals connected to electronic
communication devices, and determine their investment
attitudes. Namely, there exists circular causality in the
foreign exchange market.

One of the authors (JAH) introduced the concept of
stochastic resonance for a human population dynamics us-
ing an Ising-like model of a financial market [33]. It was
shown that if a financial market is driven by a sinusoidal
signal then the signal-to-noise ratio of price changes de-
pends on the noise strength. The other author (AHS) ex-
amined the quotation behavior of the foreign exchange
market, defined as the number of quotations per unit of
time. In previous works [34,35] it was reported that the pe-
riodic motions appear and disappear dependent on the ob-
servation periods, and that the characteristic frequencies,
defined by the peak position of the power spectrum den-
sity of the tick frequency, depend on the currency pairs.
This phenomenon is explainable if the periodic exogenous
information which several market participants perceive ex-
ists.

In this article, the relationship between periodic mo-
tions of behavioral frequencies in the foreign exchange
market are empirically observed and theoretically con-
sidered. A spectral analysis of the behavioral frequency
for 15 currency pairs dealt with in the foreign exchange
market is conducted through high-accuracy data of quota-
tion. For all currency pairs characteristic periodic motions
are confirmed, and several groups of currency pairs with
the same periodicity are found. In order to understand
the relationship among periodicities observed for behav-
ioral frequency of currency pairs, an agent-based model is
considered. Theoretical analysis of this agent-based model
proposes the hypothesis that the relationship is related to
the structure through which the market participants per-
ceive information.

The remainder of this article is structured as follows. In
Section 2 spectral analysis for 15 kinds of currency pairs
is conducted. It is shown that there are several groups
of currency pairs having the same periodic frequency. In
Sections 3 and 4 an agent-based model is considered and
theoretical analysis of the agent-based model is shown in
order to explain the existence of several groups with the
same periodicity. In Section 5 resonance phenomenon and
the relationship among characteristic frequencies are dis-
cussed. Section 7 is devoted to concluding remarks.

2 Empirical analysis

15 kinds of currency pairs dealt with in the foreign ex-
change market contain 10 major currencies: EUR (Euro),
NZD (New Zealand Dollar), CAD (Canadian Dollar), SEK
(Swedish Krone), AUD (Australian Dollar), USD (United
States Dollar), GBP (British Pound), NOK (Norwegian
Krona), JPY (Japanese Yen), and CHF (Swiss Franc).
The sampling periods of the data are from 1st Septem-
ber 2000 to 29th September 2000 for 15 kinds of currency

pairs and from 1st January 1999 to 31st December 2004
for EUR/JPY. The data, which was provided by CQG
Inc., contains quotations of market participants in the for-
eign exchange market [36]. One segment records bid or ask
quotations and time stamps with 1 [min] resolution. Since
the two-way quotation is adopted by market participants
in the foreign exchange market, the number of ask quota-
tions is nearly equal to that of the bid quotations. There-
fore counting one side is sufficient. The tick frequency for
the jth currency pair Aj(k) is defined as the number of
ask quotations per unit time,

Aj(k) =
1

∆t
Cj(k∆t, (k + 1)∆t), k = 1, 2, . . . , (1)

where Cj(t1, t2) is the number of ask quotations of the jth
currency pair between t1 and t2, and ∆t = 1 [min] denotes
sampling time.

By using periodgram estimator power spectrum for the
jth currency pair Pj(fn) is computed with window length
N = 1440 [min] (24 h) and averaged over 21 days. The
Nyquist critical frequency fc = 1/(2∆t) is 0.5 [1/min]
because ∆t = 1 [min]. In order to eliminate contributions
for low frequencies the spectra are multiplied by the low-
cut filter function,

Q(fn) = 2

(
1 − cos

(
fn

fc

))
. (2)

As shown in Figure 1 it is found that the tick frequen-
cies for most currency pairs have several peaks at various
characteristic frequencies, which are defined as the peak
positions. This means that the behavior of the market par-
ticipants in the foreign exchange market includes periodi-
cal components. The characteristic frequencies distribute
into a range of a few minutes as shown in Figure 2 and
Table 1.

It is found that there exist several groups of the
currency pairs having the same characteristic frequency,
as shown in Figure 2. The characteristic frequency
of the major group is 0.4 [1/min]. This group con-
tains the AUD/USD, NZD/USD, USD/CAD, USD/CHF,
USD/JPY, USD/NOK, and USD/SEK. This group seems
to be related to the USD. The second major groups are
those having 0.429167 [1/min], and 0.5 [1/min]. These
groups contain the EUR/CHF and EUR/GBP, and the
EUR/NOK and GBP/CAD. The EUR/JPY, EUR/SEK,
and EUR/USD each have a unique characteristic fre-
quency, and in the GBP/AUD the characteristic period-
icity is not detectable. These periodic motions of the tick
frequency are only observed in the European time zone
(9:00–17:00 (UTC)). The signal-to-noise ratio for a char-
acteristic frequency f̃ is defined as

SNR = 10 log Pj(f̃)/N, (3)

where N denotes the noise level, calculated from the power
spectrum around f̃ . Figure 3 shows the signal-to-noise ra-
tio calculated from power spectra averaged over a month
for USD/JPY as f̃ = 0.4. The signal-to-noise ratio for
USD/JPY depends on the period to average power spec-
tra.
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Fig. 1. Semi-log plots of the power spectrum density
for the tick frequency during the period from 1st to
29th September 2000. (a) AUD/USD, (b) NZD/USD, (c)
USD/CAD, (d) USD/CHF, (e) USD/JPY, (f) USD/NOK, (g)
USD/SEK, (h) EUR/CHF, (i) EUR/GBP, (j) EUR/NOK, (k)
GBP/CAD, (l) EUR/SEK, (m) EUR/USD, (n) EUR/JPY,
(o) GBP/AUD.

Fig. 2. Pictorial illustration of characteristic periodicity dis-
tribution on a currency network. Nodes represent curren-
cies and links represent currency pairs. The same gray-scaled
links exhibit pair with the same characteristic frequency. A
bold/dashed links represent unique periodicity/non-detectable
pair.
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Fig. 3. The signal-to-noise ratio of tick frequencies calculated
from power spectra averaged over a month for EUR/JPY dur-
ing a period from January 1999 to December 2003.

Table 1. The characteristic frequencies of which periodic mo-
tions for behavioral frequencies are observed in the foreign ex-
change market.

currency pair characteristic frequency [1/min]
AUD/USD 0.4
NZD/USD 0.4
USD/CAD 0.4
USD/CHF 0.4
USD/JPY 0.4
USD/NOK 0.4
USD/SEK 0.4, 0.2
EUR/CHF 0.429167
EUR/GBP 0.429167
EUR/NOK 0.5
GBP/CAD 0.5
EUR/SEK 0.428472
EUR/USD 0.333
EUR/JPY 0.313889
GBP/AU ND

3 Model

In order to explain these periodic motions consider
an agent-based model of a financial market where
N market participants trade M currency pairs. Each
agent perceives both periodic exogenous information and
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endogenous information and chooses his/her investment
attitude from three kinds of actions (buying, selling, and
waiting). The characteristics of their investment attitudes
determine rate fluctuations and the tick frequency. This
structure has some analogy to populations of nonlinear
elements such as Josephson junction arrays and neuronal
arrays [6,12,37].

Let yij(t) denote an investment attitude of the ith mar-
ket participant for the jth currency pair. The market par-
ticipants are able to select their actions yij(t) from three
investment attitudes coded as 1 (buying), −1 (selling),
and 0 (waiting).

For simplicity the ith market participant perceives
scalar information xi(t). If xi(t) > (<)0 then he/she
has a tendency to be a buyer (seller). This information
builds a momentum when he/she decides his/her invest-
ment attitude. He/she makes a time-dependent interpre-
tation based on the information. Since the possibility of
interpretation is quite high, the interpretation is assumed
to be described as xi(t) + ξi(t) by using a noise term. The
interpretation drives the participant’s feeling and his/her
feeling about the feeling [38]. Since the feeling about the
feeling sometimes becomes contrary to the feeling, it is
expressed as Φij(t) = aij(t)(xi(t) + ξi(t)) by using a mul-
tiplicative factor aij(t). If aij(t) is positive/negative then
the feeling about the feeling supports/refutes the feeling.

The action is determined on the basis of the partic-
ipant’s feeling about the feeling. Since the decision and
action have strong nonlinearity one may choose the Gra-
novetter type of threshold dynamics [39].

yij(t) =

⎧⎨
⎩

1 (Φij(t) ≥ θB
ij(t))

0 (θS
ij(t) < Φij(t) < θB

ij(t))
−1 (Φij(t) ≤ θS

ij(t)),
(4)

where θB
ij(t)/θS

ij(t) (θB
ij(t) > θS

ij(t)) denotes the threshold
for the ith market participant to make a selling/buying
decision for the jth currency pair.

The excess demand for the jth currency pair,∑N
i=1 yij(t), drives the market price Pj(t) of the jth cur-

rency pair [40]: Rj(t) = log Pj(t + ∆t) − log Pj(t) and
defines the log returns as the excess demand,

Rj(t) =
γ

N

N∑
i=1

yij(t), (5)

where γ is a positive constant to show the response of
the return to the excess demand. Furthermore the tick
frequency for the jth currency pair is defined as

Aj(t) =
1

∆t

N∑
i=1

|yij(t)|. (6)

Moreover it is assumed that the information which the
ith market participant perceives at time t is described as
the endogenous factor, moving average of log returns over

Tij(t), plus the exogenous factor, si(t):

xi(t) =
M∑

k=1

cik(θB
ik(t), θS

ik(t))

× 1
Tik(t)

Tik(t)∑
τ=1

Rk(t − τ∆t) + si(t), (7)

where cik(θB
ik(t), θS

ik(t)) represents the attention of the ith
market participant for the jth currency pair. Tij(t) rep-
resents a time interval which the ith market participant
uses in order to calculate the moving average for the jth
currency pair at time t.

If si(t) is positive/negative, then it builds the momen-
tum when the ith market participant has a tendency to
determine a buying/selling attitude. It seems reasonable
to assume that cik(x, y) has a tendency to be zero for
x → ∞ and y → −∞, limx→∞,y→−∞ cik(x, y) → 0 since
the market participants have a tendency to pay attention
only to financial commodities which they frequently trade.

In this agent-based model each agent possesses
4M time-dependent behavioral parameters: θB

ij(t), θS
ij(t),

aij(t) and Tij(t). The whole model has 4MN behavioral
parameters.

4 Theoretical analysis

For the sake of convenience assume that uncertainty of
interpretation ξi(t) is sampled from a zero-mean Gaussian
distribution with a standard deviation σ. Moreover the
correlation function is assumed to be

〈ξi(t1)ξj(t2)〉 = σ2δi,jδt1,t2 , (8)

where δi,j = 1(i = j)/ = 0(i �= j). These assumptions
mean that interactions among the interpretation of each
individual are very weak in the financial market and that
the interpretation of each individual randomly varies with-
out correlation.

Then the probability for the ith agent to choose yij =
1, 0,−1 is given by

Qij(yij ; t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2erfc

(
θB

ij(t)/aij(t)−xi(t)√
2σ

)
(yij = 1)

1
2erfc

(
xi(t)−θS

ij(t)/aij(t)√
2σ

)
(yij = −1)

1 − Qij(1; t) − Qij(−1; t) (yij = 0),

(9)

where erfc(x) is the complementary error function. From
equation (9) one can describe

〈yij(t)〉 = Qij(1; t) − Qij(−1; t), (10)
〈|yij(t)|〉 = Qij(1; t) + Qij(−1; t). (11)

From equations (5), (6), (10), and (11) one obtains

〈Rj(t)〉=
γ

N

N∑
i=1

f
(
xi(t); θB

ij(t)/aij(t), θS
ij(t)/aij(t)

)
,(12)

〈Aj(t)〉= 1
∆t

N∑
i=1

g
(
xi(t); θB

ij(t)/aij(t), θS
ij(t)/aij(t)

)
,(13)
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where

f(x; α, β) =
1
2

erfc
(α − x√

2σ

)
− 1

2
erfc

(x − β√
2σ

)
, (14)

g(x; α, β) =
1
2

erfc
(α − x√

2σ

)
+

1
2

erfc
(x − β√

2σ

)
. (15)

Introducing noises ηj(t) and εj(t) we may approximate
Rj(t) and Aj(t) as

Rj(t) = 〈Rj(t)〉 + ηj(t), (16)
Aj(t) = 〈Aj(t)〉 + εj(t). (17)

According to the central limit theorem it is natural that
ηj(t) and εj(t) are assumed to be identically and indepen-
dently distributed Gaussian noises. Therefore Rj(t) and
Aj(t) are described as a nonlinear dynamical system with
noise.

5 Discussion

If the exogenous information is assumed to be periodic

si(t) = ql sin(2π∆tflt), (l = 1, 2, . . . , K) (18)

where ql denotes an amplitude, fl is a characteristic fre-
quency of which the agents belonging to the lth group
(Wl) perceive exogenous information then the charac-
teristic periodic motion of Aj(t) emerges. Suppose that
the ith market participant belongs to the lth group
(i ∈ Wl) and pays attention to the jlth financial com-
modities (jl ∈ Ul). Namely one can assume θB

ijl
(t) =

∞ and θS
ijl

(t) = −∞ for i /∈ Wl. Since one has
limα→∞,β→−∞ f(0; α, β) = 0, limα→∞,β→−∞ g(0; α, β) =
0, and limx→∞,y→−∞ cik(x, y) = 0, using equa-
tions (7), (12), and (13) one can rewrite equations (16)
and (17) as

Rjl
(t) =

γ

N

N∑
i∈Wl

f
( ∑

k∈{Ul}
cik(θB

ik(t), θS
ik(t))

× 1
Tik(t)

Tik(t)∑
τ=1

Rk(t − τ∆t) + al sin(2π∆tflt);

θB
ijl

(t)/aijl
(t), θS

ijl
(t)/aijl

(t)
)

+ ηjl
(t), (19)

Ajl
(t) =

1
∆t

N∑
i∈Wl

g
( ∑

k∈{Ul}
cik(θB

ik(t), θS
ik(t))

× 1
Tik(t)

Tik(t)∑
τ=1

Rk(t − τ∆t) + al sin(2π∆tflt);

θB
ijl

(t)/aijl
(t), θS

ijl
(t)/aijl

(t)
)

+ εjl
(t). (20)

Therefore the jlth financial commodities are contained in
the lth group, and periodic motions with the same char-
acteristic frequency appear for jlth financial commodities.

The periodic exogenous information is thought of
as periodic stimuli which market participants perceive
through computer terminals as part of the electronic bro-
kering system. Specifically, since these periodic motions
are observed only for the European time zone, it is in-
ferred that only European market participants perceive
these stimuli.

From Appendix A it is clarified that the resonance de-
pends on the behavioral parameters of the market partic-
ipants. Namely the signal-to-noise ratio reflects the states
of the behavioral parameters. If the behavioral parameters
of the market participants vary in time, then the signal-
to-noise ratio during observation periods depends on the
observation period. This suggests the hypothesis that the
signal-to-noise ratio is related to the states of market par-
ticipants. In fact Figure 3 shows this dependency of the
signal-to-noise ratio on the observation period.

Actually in psychophysiology it is known that in the
method of constant stimuli the probability of decision-
making is approximated as the logistic function if stimuli
are given at random [41]. Since the facts that the same
stimuli do not always lead to the same response and that
the probability is well approximated as the error function
which one of the candidates having the similar properties
to the logistic function are consistent with equations (10)
and (11), the assumption equation (8) seems to be ade-
quate. Note that the probabilities of decision-making are
dependent on the past interpretations or the past deci-
sions and that Qij(y; t) can be described as heterogeneous
time-dependent functions in terms of aij(t) and xi(t) if
uncertainty of interpretation in equation (8) is not inde-
pendent but correlated. If ξi(t) is autocorrelated then both
the noise strength and the autocorrelation times affect
the signal-to-noise ratio as indicated in successive stud-
ies of stochastic resonance [42,43]. Furthermore if ξi(t) is
cross-correlated for each other then the effect of stochas-
tic resonance weakens according to array stochastic res-
onance [44,45]. Detailed investigations on cases of auto-
correlated and cross-correlated noises are reserved for fu-
ture works.

6 Numerical simulation

In order to perform numerical simulation of the agent-
based model, where 2 000 market participants trade two
kinds of currency pairs we assume two groups (the num-
ber of the population is 1 000) of market participants who
exchange a currency pair and perceive the periodic in-
formation. Each market participant belonging to the lth
group perceives sinusoidal information with amplitude al

and characteristic frequency fl (l = 1, 2). In order to
calculate this agent model we assumed that cik(x, y) =
mik/(x2 + y2), where mik is a random matrix taking ±1
with the same probability 1/2. Figure 4 shows the power
spectra multiplied by the low-cut filter, equation(2). It is
found that the periodic motion of the tick frequency ap-
pears. Namely the group of currency pairs with the same
characteristic frequency may mean that the market par-
ticipants who belong to the same group pay attention to
and trade those currency pairs.
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Fig. 4. Filtered power spectra obtained from numerical sim-
ulation at ∆t = 1, θB

ij(t) which is initially sampled from a
normal distribution with a range [0.1, 0.2] for 1 < i ≤ 1 000
and j = 1, and 1 000 < i ≤ 2 000 and j = 2, and fixed at
10 000 for otherwise, θS

ij(t) which is initially sampled from a
normal distribution with a range [−0.2,−0.1] for 1 < i ≤ 1 000
and j = 1, and 1 000 < i ≤ 2 000 and j = 2, and fixed at
−10 000 for otherwise, N = 2 000, M = 2, σ = 0.23, q1 = 0.1,
q2 = 0.1, f1 = 0.333 and f2 = 0.8, and Tij(t) = 1. Furthermore
aij(t) is assumed as aij(t) = a + a′

ij(t), where a = 0.1 is a real
number which represents a mean of aij(t). a′

ij(t) is assumed
that they are sampled from an identical and independent zero-
mean Gaussian distribution with standard deviation σa′ = 0.5.
(a) exhibits a power spectrum for the first group and (b) that
for the second one.

As shown in Figure 5, the signal-to-noise ratio of be-
havioral frequencies defined as equation (3) is a function
with an extreme value of σ. Namely stochastic resonance
occurs in the agent-based model as predicted in the dis-
cussion section, Section 5. This result proposes the hy-
pothesis that dependency of the signal-to-noise ratio on
the observation period as shown in Figure 3 is related to
resonance due to the variation of behavioral parameters
of the market participants.

Peak positions of power spectra for tick frequencies
f̃ depend on the frequency of exogenous periodic infor-
mation fl. As shown in Figure 6 it is confirmed that a
characteristic frequency of lth group f̃l is described as

f̃l =
1
2

(
1 − |1 − 4fl|

)
. (21)
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Fig. 5. A relation between uncertainty of interpretation σ and
the signal-to-noise ratio of behavioral frequency of the first
group f1 obtained from numerical simulation at ∆t = 1, θB

ij(t)
which is initially sampled from a normal distribution with a
range [0.1, 0.2] for i ≤ 1 000 and j = 1, and i > 1 000 and
j = 2, and fixed at 10 000 for otherwise, θS

ij(t) which is initially
sampled from a normal distribution with a range [−0.2,−0.1]
for i ≤ 1 000 and j = 1, and i > 1 000 and j = 2, and fixed at
−10 000 for otherwise, N = 2 000, M = 2, a = 0.1, σa′ = 0.5,
q1 = 0.1, q2 = 0.1, f1 = 0.333 and f2 = 0.8.
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Fig. 6. A relation between the characteristic frequency of the
first group f̃1 and a frequency of exogenous periodic informa-
tion f1 obtained from numerical simulations at ∆t = 1, θB

ij(t)
which is initially sampled from a normal distribution with a
range [0.1, 0.2] for i ≤ 1 000 and j = 1, and i > 1 000 and
j = 2, and fixed at 10 000 for otherwise, θS

ij(t) which is initially
sampled from a normal distribution with a range [−0.2,−0.1]
for i ≤ 1 000 and j = 1, and i > 1 000 and j = 2, and fixed at
−10 000 for otherwise, N = 2 000, M = 2, a = 0.1, σ = 0.23,
σa′ = 0.5, q1 = 0.1, q2 = 0.1 and f2 = 0.8. The line represents
a fitting curve: f̃l = (1 − |1 − 4fl|)/2.

This dependency comes from a second harmonic wave due
to the nonlinearity of equations (19) and (20).

7 Conclusion

Empirical analysis of tick frequency data in the foreign
exchange market showed that characteristic periodic mo-
tions are confirmed for all currency pairs and that there
exist several groups with the same characteristic fre-
quency. The signal-to-noise ratio of behavioral frequencies
is dependent on observation periods.

Theoretical analysis of the agent-based model pro-
posed the hypothesis that the relationship among char-
acteristic periodicities is associated with the structure of
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which market participants pay attention to currency pairs.
If different sources of periodic information exist and mar-
ket participants pay attention to several currency pairs,
then this finding is explainable. The dependency of the
signal-to-noise ratio of the tick frequencies is derived from
the variation of behavioral parameters of the market par-
ticipants.

The applications of this finding are quantification of
the states of market participants, and an influential struc-
ture through which the market participants perceive in-
formation. Quantifying the temporal structure of these
groups is expected to lead to deep understanding of the
foreign exchange market. It would be interesting to un-
derstand the meaning of the specific frequencies observed
in our data for the foreign exchange markets. A broader
data analysis and careful statistical tests are reserved for
future work.

Analyzing the periodicities of collective motions is ex-
pected to provide insights into the coupling structure of
individuals of many body systems in many fields of both
the natural and social sciences.

This work is partially supported by a Grant-in-Aid for Scien-
tific Research (# 17760067) from the Japanese Ministry of Ed-
ucation, Culture, Sports, Science and Technology (A.-H. Sato),
by the EU Grant MMCOMNET, No. 012999 (A.-H. Sato and
J.A. Ho�lyst) and by Polish Ministry of Science and Higher Ed-
ucation, Grants No. 13/6.PR UE/2005/7 and ESF/275/2006
(J.A. Ho�lyst).

Appendix A: Linear response

Specifically, under the assumption that xi(t) is small
and that Tik(t) = T , the Taylor expansion of R(t) =
[R1(t) . . . RM (t)]t and A(t) = [A1(t) . . . AM (t)]t and ig-
noring the higher order terms than the second order yields

R(t) =
T∑

τ=1

Gτ (t)R(t − τ∆t) + SR(t) + η′(t), (22)

A(t) =
T∑

τ=1

Dτ (t)R(t − τ∆t) + SA(t) + ε′(t), (23)

where

(Gτ (t))jk =
γ

NT

N∑
i=1

f ′(0; θB
ij(t)/aij(t), θS

ij(t)/aij(t)
)

×cik

(
θB

ik(t), θS
ik(t)

)
, (24)

(Dτ (t))jk =
1

T∆t

N∑
i=1

g′
(
0; θB

ij(t)/aij(t), θS
ij(t)/aij(t)

)
×cik

(
θB

ik(t), θS
ik(t)

)
, (25)

(SR(t))j =
γ

NT

N∑
i=1

f ′(0; θB
ij(t)/aij(t), θS

ij(t)/aij(t)
)
si(t),

(26)

(SA(t))j =
1

T∆t

N∑
i=1

g′
(
0; θB

ij(t)/aij(t), θS
ij(t)/aij(t)

)
si(t),

(27)

(η′(t))j =
γ

NT

N∑
i=1

f
(
0; θB

ij(t)/aij(t), θS
ij(t)/aij(t)

)
+ ηj(t),

(ε′(t))j =
1

T∆t

N∑
i=1

g
(
0; θB

ij(t)/aij(t), θS
ij(t)/aij(t)

)
+ εj(t).

f ′(0; α, β) and g′(0; α, β) are respectively calculated as

f ′(0; α, β) = 1/
√

2πσ

×{exp[−α2/2σ2] + exp[−β2/2σ2]}, (28)

g′(0; α, β) = 1/
√

2πσ

×{exp[−α2/2σ2] − exp[−β2/2σ2]}. (29)

Furthermore the signal-to-noise ratio at fl depends on
behavioral parameters, θB

ij(t)/aij(t), θS
ij(t)/aij(t), and σ

since coefficients for si(t) of linear response, which are
derived from equations (19) and (20) under xi(t) 
 1,
depend on these behavioral parameters. This dependency
of the signal-to-noise ratio on these behavioral parameters
is estimated from the following relationship: f ′(0; α, β) is
a function which is a monotonically decreasing function
for |α| and |β| and has an extremal value at σ = σ∗

1 ,
respectively. g′(0; α, β) is a function which is a monoton-
ically decreasing function for |α| and a monotonically in-
creasing function for |β| and has an extremal value at
σ = σ∗

2 , respectively. Here σ∗
1 and σ∗

2 are solutions of
∂

∂σf ′(0; α, β) = 0 and ∂
∂σ g′(0; α, β) = 0, respectively.

Specifically, if the signal-to-noise ratio depends on σ, then
the resonance is classified as a stochastic resonance.
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