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Topic selectivity and adaptivity 
promote spreading 
of short messages
Patryk A. Bojarski, Krzysztof Suchecki & Janusz A. Hołyst*

Why is the Twitter, with its extremely length-limited messages so popular ? Our work shows that 
short messages focused on a single topic may have an inherent advantage in spreading through social 
networks, which may explain the popularity of a service featuring only short messages. We introduce a 
new explanatory model for information propagation through social networks that includes selectivity 
of message consumption depending on their content, competition for user’s attention between 
messages and message content adaptivity through user-introduced changes. Our agent-based 
simulations indicate that the model displays inherent power-law distribution of number of shares 
for different messages and that the popular messages are very short. The adaptivity of messages 
increases the popularity of already popular messages, provided the users are neither too selective nor 
too accommodating. The distribution of message variants popularity also follows a power-law found 
in real information cascades. The observed behavior is robust against model parameter changes and 
differences of network topology.

Information has a profound impact on our life. It can influence opinions and shape collective decisions, including 
 voting1–3 or behavior in crisis  situations4. This is especially true in recent years, with social networks becoming 
one of if not the most important source of information for  people5. It is therefore of high importance to under-
stand the process of information spreading, especially since misinformation - false or highly biased information, 
can significantly impact the outcome of choices a person makes and is potentially open to  manipulation3,6–8. The 
topic of information spreading in social networks has been under scrutiny, especially for large online platforms 
such as  Facebook9 or  Twitter10,11. It has been observed that spreading of infectious diseases and information share 
some similarities—most importantly lack of any sort of conservation laws, unlike diffusion of physical fluids or 
heat. The simple epidemic models, such as Susceptible-Infected12 have been therefore often used to represent 
and model the spread of  information13. Similar models, like Independent Cascade models have been also used 
to model spreading of  information13, including topic-aware  models14. It has been shown however, that the real 
spreading process, depending on the type of the information, could be substantially different from a simple 
compartmental epidemic  model15. In fact, many features of the real information spreading processes have been 
 identified16 and  modeled17–20, including  applications21. A significant research has been made into the impact of 
message features on the spreading process—in particular, the communication on the Twitter  platform11,22,23.

It has been shown that people do not consume and spread news uniformly as they receive it, but selectively 
according to their  perception24 or their content and  interests11. The choice of what to read and trust will depend 
on user’s beliefs and their perception of the message. The selectivity of message consumption will further impact, 
perhaps to even greater degree, what is actually shared by the user. The existence of such confirmation bias is well 
 known25 and it has also been directly shown that it causes individuals not only to choose information sources that 
confirm what they know, but also selectively peruse stories and messages from the sources they already subscribe 
 to26,27. Both selective news consumption and the choice of information sources may lead to creation of so-called 
echo  chambers27–31, where like-minded individuals form tight-knit communities that may consume almost no 
information from outside of their bubble, either by choice or by ignorance. In recent times, due to the existence 
of automated recommendation systems, the selectivity of information consumption may not be completely a 
result of individual choice or  preference32–36.

Aside from choosing what they read and share, users in online network can choose how and exactly what 
details of the information they obtained they want to share. Not being held by standards of the traditional  media5, 
the users can introduce changes or individual biases as they propagate information further to their own friends. 
This can affect both form and content of messages. The changes will be shaped by user’s beliefs, perceptions and 
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potentially agenda, so the adapted messages will reflect user’s beliefs. Several cases of mutable message spreading 
have been studied, such as changes in chain-letters37, stories propagated through  blogs38 or online social net-
working services such as  Facebook39. It has also been shown experimentally that the meaning of messages can 
change even if individuals are only trying to change its form, such as message  shortening40. This phenomenon 
poses problems in tracking message content spread in social networks, although immutable markers such as 
URL  links41 or  hashtags39 have been used. There was research on tracking changing information, such as spe-
cific chain  letters42 or meme-like phrases by phrase inclusion in  another38. It has been also shown that spread of 
changing information shows characteristics similar to genetic  mutations37,43. In fact, meme variant popularity 
shows characteristics of the Yule model designed to represent evolving  populations39.

Unlike a typical epidemic or Independent Cascade model, messages in online networks do not spread inde-
pendently from each other, which is often dubbed complex  contagion44. In case of online social media in par-
ticular, the users can devote only a limited time to their online activities which results in limited capacity to read 
and share. Given the immense amount of information present on the internet, this means that effectively different 
messages compete for the attention of the user and not all messages a user is exposed to will be even read. This 
issue has been modeled and investigated  before45,46. It is known in particular that competing epidemics may 
result in power-law distribution of the cascade  sizes45. It is worth to note, that such competition may be viewed 
as a higher-order interactions between users. This approach is subject to extensive research in recent  years47,48, 
including with explicit competition between  messages49,50.

In this work, we propose a new model of information spreading in online social networks, that reflects three 
aspects of a real process: selective consumption and sharing of messages, possibility to adapt messages by users 
spreading them and competition for user’s attention between messages. Our primary assumption is that online 
users want to propagate information they like or agree with, such as a conspiracy theory believer propagating 
information supporting the conspiracy he believes in, a scientist propagating only scientifically plausible content, 
or a politician tweeting only information supporting her agenda. If confronted with a message that user does not 
completely agree with but thinks it still has some merit, he may decide to adjust the information, removing parts 
of the message that he does not agree with, modify it, or even add something from himself. Such a modifica-
tion may be motivated by a need to shorten it, share their own thought on the matter, push their own agenda or 
may be unintentional, resulting from individual understanding based on user’s perceptions and beliefs. The key 
point here is that different users have different opinions or preferences. Users will forward information similar 
to their beliefs, while ignoring and effectively stifling information that they do not agree with. Such spreading 
process may therefore bear some resemblance to opinion dynamics, as messages received and read may in general 
influence users’  opinions51. Here, we opt to look at a short-term process, where we assume opinions and beliefs 
are constant. They are chosen at the beginning and do not change afterwards. The spreading of messages relies 
on these opinions, but as the opinions are fixed, the model should not be considered opinion spreading model. 
We do not consider the veracity of opinions or messages and represent both opinions and message contents by 
abstract vectors in multidimensional space. This is partially inspired by often used representation of documents 
as vectors in word space, with cosine between such vectors a measure of  similarity52. The representation is also 
similar to previous topic-aware spreading models based on Independent Cascades by Barbieri et al.14, but with 
significant difference as to what the vectors represent. Existing topic-aware model represents a share of a topic in 
a message as vector components, and is based on real text analysis, while in our case the components represent 
opinions on abstract topics.

The main aim of the work is to investigate the behavior of the proposed agent-based model and understand 
the impact of its three features not present in typical epidemic-inspired models: user selectivity, message adaptiv-
ity and competition for user attention. Each agent holds a randomly chosen vector of opinions, each component 
with value 1, −1 or 0 representing two opposite opinions on a given topic and neutral stance respectively. These 
are chosen initially and remain constant throughout a simulation. Agent can either post a new message that 
perfectly reflects a few of his opinions, represented by a vector with only a few components, or read messages he 
was exposed to by his neighbors. Agent will read and share the newest of the messages that he finds agreeable, 
meaning cosine similarity was above the threshold value. When sharing a message, the agent may adapt it, chang-
ing one of its components to match agent’s own opinion vector. A more detailed description of the model and its 
parameters can be found in section “Model”. The proposed model does not attempt to capture the exact complex 
features of a real information spreading process in detail, and is thus not intended as a predictive model. It is 
instead an explanatory model containing some chosen characteristics of the real process, but with mechanisms 
and rules clearly defined and not reliant on data. It is therefore more similar to epidemic or threshold models 
often used to represent information spreading, than a data-driven model fitted to particular data and evaluated 
purely on the accuracy of their prediction.

We have performed numerical agent-based simulations of the model for various network topologies, including 
Erdös-Rényi random  graph53, Barabási-Albert scale-free  network54 as well as real social networks (see section 
“Datasets” for details on real networks used). Our two main measures obtained from numerical simulations are 
popularity of a message and message length. Message popularity is simply the number of times it has been shared 
in the social network. This includes all variants of the same message, if it has been modified during the spreading 
process. Message length is the number of opinions contained in them - number of opinion vector components 
present in the message. It is not a true length like word count or character count used in Tweets, but we expect 
that the amount of opinions or topics the message touches will be correlated with the actual length of the message.

Our most interesting observation is the increased popularity of the messages that are short, at least when 
selectivity is not too low or high. This is an effect of selective message reading and sharing, coupled with competi-
tion for attention. Competition has a profound effect, enforcing a power-law distribution of message popularity 
for a wide range of parameter values. Adaptivity of messages has a smaller impact, but for medium values of 
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selectivity it allows popular, short, viral messages to achieve even greater popularity. These findings are further 
elaborated in the following section “Results”.

The main contribution of this work is proposing a new model of information spread in social networks, that 
demonstrates the popularity of short messages in online media and thus indirectly explains popularity of Twitter 
platform that features short messages by design.

Results
Our focus was on effects of selectivity of users, adaptivity of messages and competition between them and we 
investigated these processes using numerical agent-based simulations on several synthetic and real network 
topologies. Attributes representing opinions of agent i are vectors of length D, each component xij having value 
−1 ,0 or +1 representing neutral and two opposing views on a specific topic j. In a similar fashion each message 
m is a vector in sub-space of topics, each component ymj also featuring value −1 , 0 or +1 representing message’s 
content regarding topic j. Messages contain only a few out of D total possible components, their number being 
the message length. Figure 1 shows agent’s opinion vectors and message contents in an example. Section “Model” 
contains a detailed description of the model and its parameters.

Our parameter representing the strength of selectivity is a threshold τ ∈ [− 1, 1] . If the cosine similarity 
between agent’s opinion vector and opinion vector of the message is larger than this threshold, the message will 
be read and shared by the agent, otherwise it will be ignored.

Agents look at messages in order of decreasing freshness until they find one similar enough to share. This 
means that newer messages may block reading older messages, even if these older messages are closer to agent’s 
own opinions. In effect, the messages compete for attention, as popular messages will be generally shared more 
often and thus will have higher chance to be the newest message for agents exposed to them.

The adaptivity is represented through a probability α that when seeing an interesting (with similarity above 
threshold τ ) message, the agent will adapt the message before sharing it. When adapting the message, a single 
component in the message that is different than corresponding agent’s opinion will be removed or changed to 
match. Alternatively a single new component reflecting agent’s opinions may be added to the message vector. 
The adaptivity concerns only message contents and does not affect agent own opinions or network topology.

We have tracked the popularity of messages and their average length (see section “Measures” for details). In 
particular, the distribution of message popularity has been investigated – the fraction of messages that attained 
a given total number of shares. The simulations have used synthetic connection topologies of Erdős–Rényi 
graphs (ER)53 (any pair of nodes connected with fixed probability p = �k�/N ), Barabási–Albert networks (BA)54 
(evolving scale-free network using preferential attachment, with P(k) ∼ k−3 ) as well as Facebook and Twitch 
user networks (see section “Datasets” for details). Opinion vectors for agents were chosen independently and at 
random, with each component value being −1 , 0 or 1 with equal probability.

The simulations focus on networks of size N = 600 nodes and mean degree �k� = 6 for synthetic networks. 
The probability of agents creating a new message instead of reading and sharing is η and we assumed value η = 0.1 
for all simulations. The simulations have been performed for two different adaptivity probabilities α = 0.0 (mes-
sages cannot be modified) and α = 0.2 (agents can modify messages) and three selectivity τ values: − 0.4 , 0.2 
and 0.8. For each parameter set we made 10 independent realizations and aggregated the results into popularity 
distributions and mean message length depending on popularity.

Figure 2 shows the results of numerical simulations for ER and BA synthetic networks and also shows the 
impact of competition between messages. Note that error bars for average message length represent standard 
deviation of message lengths of given popularity, not the uncertainty of the mean value, that would be signifi-
cantly smaller.

The first observation is that in majority of situations, the distribution of number of shares of messages is a 
power-law distribution. However, when the competition is absent and messages spread independently, then for 
low similarity (Fig. 2g) messages either disappear right away or spread to entire network, like in an independent 
cascade  model13 with spreading probability above percolation  threshold55. If selectivity is high (Fig. 2i), it limits 
the popularity of messages, resulting in part of distribution resembling power-law, but only vaguely. We can 
conclude that the competition between messages is the factor producing the observer power-law distribution 
of popularity.

Figure 1.  Opinion vectors for agents A and B differ, so message m that matches A perfectly will most likely not 
fit B. An example for opinion vectors with D = 6 components, with message m having length 3.
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Figure 2.  In majority of situations the popularity distribution of messages is a power-law distribution, with 
the tail dominated by very short messages. The figure shows the influence of user selectivity τ and message 
adaptivity α on the popularity and on the average length of messages propagating in synthetic networks. Panels 
(a)–(f) show spreading with competition between messages (agents can share only the most recent message 
he likes), while panels g-i show spreading without this constraint. Panels (a)–(c) present the popularity for ER 
networks and 500, 000 time steps, d-f for BA networks with 500, 000 time steps and g-i for ER network, but with 
a shorter time horizon—50,000 time steps. The simulations were carried out for networks with size N = 600 and 
an average node degree �k� = 6 . The agents’ opinion vectors were randomly selected. The probability of creating 
a new message equals η = 0.1 . The probability density of the number of shared messages (left vertical axis) is 
marked with crosses and pluses. The average length of the message (right vertical axis) with a given popularity 
is marked with dots, and its standard deviation with error bars. Columns correspond to τ = − 0.4 , 0.2 and 
0.8, green symbols are for simulations without adaptivity ( α = 0 ), while red symbols with adaptive messages 
( α = 0.2).
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The second observation is that for medium ( τ = 0.2 ) and high selectivity ( τ = 0.8 ) as shown on Fig. 2b, c, e, 
f, h, i the more popular messages are shorter, with most popular being of length around 1. The opposite is true 
for low selectivity τ = − 0.4 (Fig. 2a, d, g). This can be explained. As opinion vectors are random, their cosine 
similarity with essentially random message vectors tend toward 0 as messages become longer. Thus for τ < 0 
long messages almost never fail to be accepted, while for τ > 0 they almost always are below the threshold.

The third observation is that for medium and high value of selectivity τ (Fig. 2b, c, e, f, i) we can observe a 
peak in the popularity distribution, corresponding to viral, short messages. This peak shifts to higher values when 
adaptivity is introduced and selectivity is medium ( τ = 0.2 , Fig. 2b,e), meaning that already popular messages 
reach even a larger part of the network. If selectivity is too small, adaptations don’t increase reach, because the 
messages would spread everywhere anyway if not for competition, and if the selectivity is too high, then any 
message that is not rejected is already perfect match for the agent and thus can’t be modified.

The fourth observation is that the results for ER random graph (Fig. 2a–c) and BA network (Fig. 2d–f) are 
very similar. This means that the degree distribution has no noticeable impact on behavior of our model.

To understand whether any of the observed phenomena results from the network size, we have performed 
numerical simulations for a smaller network of N = 60 nodes as well as larger network of N = 6000 nodes, both 
using Barabási-Albert model topology. The results are shown in Fig. 3.

Comparing these results with Fig. 2d, f it is evident that the behavior of the model is at least qualitatively the 
same for networks of different sizes. The power-law popularity distribution, the dominance of short messages 
and adaptivity boosting popularity of already viral messages are all visible. The only different detail for small 
network is the fact that the peak corresponding to viral messages may not appear (compare Fig. 2e, f with Fig. 3b, 
c). In consequence the adaptivity impact observed in larger systems may be not visible.

Figure 3.  The model behaves in a similar fashion for networks of different sizes. The figure presents the 
influence of user selectivity τ and message adaptivity α on the popularity and average length of messages 
propagating in synthetic BA networks. Panels (a)–(c) shows message spreading for small networks N = 60 
with 50, 000 time steps. Panels (d)–(f) are for a large BA networks N = 6000 with 5, 000, 000 time steps. Other 
parameters are the same as in Fig. 2. Columns correspond to different selectivity τ = − 0.4 , 0.2, 0.8, green 
symbols are for simulations without adaptivity ( α = 0 ) while red are with adaptivity ( α = 0.2).
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To see whether the topological properties of real social networks alters the behavior of the model, we have 
included two real network connection topologies in our simulations. We have used an aggregated friendship 
ego-network of Facebook users and network of friendship of Twitch users, see section “Datasets” for dataset 
details. In both cases we have only used the network structure and discarded any other user features included in 
datasets. Agent opinions were assigned randomly, just like for synthetic networks. The results of model simula-
tions on these networks are shown in Fig. 4.

The behavior of the model in the Twitch network (Fig. 4d–f) is very similar to its behavior in a BA network 
with N = 6000 , which is of a similar size. There is a basic power-law popularity distribution, popular messages 
are always short and there is a popularity peak corresponding to the viral messages. For Facebook (Fig. 4a–c) 
however the message length dependence appears to not be as smooth and there is no viral message peak in 
popularity distribution. This differences may be attributed to a specific, highly modular structure of the Facebook 
network, that is an aggregation of several ego networks with minimal overlaps (see section“ Datasets” for more 
details). If messages go viral in some clusters without transferring to another, there will be no sharp popularity 
peak. This results show that while the behavior is in general robust against network topology, highly modular 
network structure may alter it.

In all our simulations we have assumed that a specific message may be shared by a given user only once, and 
will be afterwards ignored, including its variants. This may not always be the case. Users may re-post the same 
information either unintentionally, because they didn’t recognize it, or intentionally, in hopes of forcefully push-
ing their views on others. The repeated communications and reinforcement are thought to be behind influence 
exerted by some of the online content on opinions of  users44. We have verified the behavior of the model in case 
messages are allowed to be re-shared any number of times, with results shown at Fig. 5.

Figure 4.  The model behaves similarly in real networks as it does in synthetic networks, although there are 
visible differences for Facebook ego-network. The figure presents the influence of user selectivity τ and message 
adaptivity α on the popularity and average length of messages propagating in real networks. Panels (a)–(c) 
shows message spreading for Facebook users network, N = 4039 and �k� = 43.69 . while panels (d)–(f) for 
English Twich users N = 7126 , �k� = 9.91 (see section “Datasets” for dataset details). Number of time steps is 
equal to 1, 000, 000 in every case. Columns correspond to different selectivity τ = − 0.4 , 0.2, 0.8, green symbols 
are for simulations without adaptivity ( α = 0 ) while red are with adaptivity ( α = 0.2).
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The results show that the behavior of the model remains qualitatively the same. The main difference is much 
broader range of message popularity, since it is not limited to number of users anymore. The viral messages also 
display a much broader range of popularity and the peak effectively becomes a bump overlaid on the power-law 
instead of true peak.

Along with the distributions of message popularity in different networks, we have also investigated the distri-
bution of relative popularity of message variants of a single message. Similarly to the work of Adamic et al.39, we 
chose only a single realization, where a single message with the most variants will be analyzed. As seen in Fig. 6, 
the variant popularity distribution appears to show characteristics of a power-law, meaning that there usually is 
just one or two main dominant variants, along with a plethora of niche adaptations. This is the same behavior as 

Figure 5.  When messages can be re-shared multiple times by the same user, the behavior of the model changes 
only quantitatively. The graphs presents popularity distribution and average message length for simulations on 
BA networks of size N = 600 and for 500, 000 time steps. Other parameters are the same as for results shown on 
Fig. 2. Columns correspond to different selectivity τ = − 0.4 , 0.2, 0.8, green symbols are for simulations without 
adaptivity ( α = 0 ) while red are with adaptivity ( α = 0.2).

Figure 6.  The variants of a single, popular message show a similar power-law distribution of their individual 
variant popularity. The figure shows the variant popularity distributions for different selectivity parameters 
τ = −0.4 (gray squares), τ = 0.2 (red circles) and τ = 0.8 (blue triangles). Simulations were conducted on ER 
networks with N = 10, 000 , �k� = 6 and 500, 000 time steps.
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found in real cascades on Facebook, investigated by Adamic et al.39. This shows that our model displays similar 
characteristics as information cascades found in real social networks.

Discussion
Summary. We have proposed a new, more realistic model of information spreading and shown that selectivity 
of users and adaptivity of message content promote messages that are short. While the model is simple and 
abstract by design, it offers a potential explanation as to why short messages are popular. Not only are they easier 
to read, their content is less often in contradiction to user’s beliefs, allowing the messages to spread more widely 
than more elaborate, longer messages. This observation may explain popularity of Twitter and similar services 
that focus users on short messages by design. We also find that the message adaptivity, the ability to change, 
can increase the popularity of viral messages but only if users are moderately selective about what they share. 
We have tested the model on synthetic networks, including scale-free Barabási-Albert (BA) network and two 
real social network topologies. The main conclusion holds regardless of the network size or specific topology 
features, including degree distribution.

Topology. The fact that scale-free degree distribution does not affect the spreading behavior is somewhat 
unexpected. We anticipated that the existence of hubs in BA networks, coupled with the possibility of changing 
the content of messages, would allow information to spread more broadly. This is not what we observe. It may be 
that the randomness of agents’ opinion vectors is responsible. In real social network people tend to keep in touch 
with like-minded people. Perhaps given different, correlated opinions the hubs would play a more significant role.

Message length. As already mentioned, the preference for short messages for positive selectivity may be a 
potential explanation for the Twitter phenomenon. Artificial limits on message length may have contributed 
to its popularity as it may have become preferred over longer internet forum or blog posts because it facilitated 
broader information spread. The research of factors contributing to tweet spreading may not seem to support 
this claim, showing small positive  influence22 or statistically insignificant  negative23 of length on popularity. It 
must be noted however, that what we mean by “short” messages here is number of topics and related opinions 
expressed in the message. With Tweets being very short, many of them may express just a single opinion and 
it may be not directly related to message length counted in characters. In addition, while our model features 
uncorrelated, static opinions of agents, interests of interacting users, such as followers on Twitter, do change in 
time to be more  uniform56. This difference may alter the overall behavior, especially for the small cascades that 
are most frequent in real systems and may change the perceived influence of factors such as length.

Variant popularity. The characteristics of message cascades found in our model are in agreement with observa-
tions made in real data. In particular, according to Adamic et al.39, the memes on Facebook behave according to 
a Yule model that describes evolving populations. The popularity distribution of variants of a message (Fig. 6) is 
qualitatively the same as distributions found by Adamic et al.39, regardless of the assumed user selectivity. Our 
finding that the most popular messages are short is in agreement with another conclusion of Adamic et al.39, 
where the maximum of the popularity occurs for mean lengths significantly below the average (unlike in Twitter 
 research22,23 mentioned above). While this is not direct comparison, it still shows that the model shows behavior 
similar to real social network communication.

Result comparison. It is worth to compare the behavior of the model with other, existing models of informa-
tion spreading. Our model is similar to simple contagion models like Susceptible-Infected (SI) or Independent 
Cascades  model13, in that it does not require repeated reinforcement or multiple neighbors to convince user to 
spread the message, like in the case of complex  contagion44, for example a threshold  model57. In fact, in absence 
of competition, or at very high selectivity, when competition does not play a significant role, our model is very 
similar to independent cascade model and will produce similar results. The only difference is that independent 
cascades essentially work like the bond percolation on the network, while in our case, because the similarity 
is checked for users, it works like the site  percolation58. When competition is important, the model produces a 
power-law distribution of popularity for wide range of topologies and model parameters. This is similar to simple 
competing epidemic processes, where the cascade size distribution also resembles power-law  distribution45. The 
behavior of our model is different than the threshold model, often used for spreading of innovations or fads. 
While threshold model can produce distribution of cascade sizes (popularity) that is similar to a power-law 
 distribution57, it does so only for scale-free networks. In our model, the distribution is emergent and does not 
rely on externally imposed power-law relations.

Future work. Our work lays a foundation for possible further research. The first avenue is to make the spread-
ing model richer, featuring correlated user opinions, asymmetric opinion distributions, or the inclusion of het-
erogeneity in agents’ selectivity or adaptivity. The second avenue is exploiting the obtained results, for example 
by including a message recommendation system to the model and testing whether its influence could be detected 
from message spread statistics, similar to how it was possible to do in internet forum  discussions59. If so, it may 
be possible to develop a method to detect the presence and assess the influence of recommendation systems in 
real online social networking services. The third potential research avenue is to implement non-pairwise interac-
tions, presence of which has been discovered in real social  networks47–50,60.

Methods
Model. We assume every agent (user) i is connected to ki other agents, creating a network consisting of N 
users, that represents contacts in the online service along which messages can spread. Each agent has its own 
opinions on D different, independent topics, represented as a vector �x of length D, which we call an opinion vec-
tor. Each element j has a value xij ∈ {−1, 0, 1} and corresponds to the same topic for all agents. For example, the 
third element of any agent’s vector opinion may represent opinion about global warming—whether they believe 
and care about it ( xi3 = 1 ), deny it ( xi3 = −1 ) or simply don’t care ( xi3 = 0).
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We use the asynchronous dynamical rule, picking agent that will act at random, where one unit of time cor-
responds to N single agent updates. When chosen for update, an agent will create a new message with probability 
η and will attempt to read and share messages he is exposed to otherwise.

When creating a new message, the agent will immediately share this message with all closest neighbors. Each 
new message is assigned a unique ID that does not change during the dynamics, even if the message is later 
changed during the spreading process. We assume that a given message will concern a certain issue (an event, 
politician’s speech, scientific discovery, etc.) and while its later variants may contain different opinions or paint 
facts in a different manner, the message will be essentially about the same issue and therefore recognizable. The 
content of every new message reflects a part of the author’s opinion. We pick message length d ∈ [1, 0.15D] at 
random from uniform distribution and randomly pick d topics with equal probabilities to be chosen. The values 
of opinions of the agent on the selected topics are copied from agent’s opinion vector, forming message content. 
(Fig. 7a). Thus, the message y contains values yj ∈ {−1, 0, 1} for a few of the topics and contains no mention 
about other topics at all.

With a probability 1− η , instead of creating a new message, the user reads the messages he is exposed to, that 
have been shared by his closest neighbors. It is done in order from the newest to the oldest received. Users do 
not know when original information was created and only see the time when a message was shared with them. 
For each message a cosine similarity between the agent’s opinion vector xi and the message y is calculated. Only 
the components of the opinion vector that are also present in the message itself are taken into account, which is 
why 0 in a message is not the same as the absence of a topic. If the similarity exceeds a certain threshold τ (the 
selectivity parameter), the agent decides he likes it and will share this message with his own neighbors. If, on the 
other hand, the similarity is equal or less than τ , the user reads increasingly older messages he received, until he 
finds the first attractive message. If after looking through the whole set of messages received there are none to its 
liking, the agent simply does not share anything. This means that an agent can only create or share (possibly modi-
fying) one message, to represent a limited capacity to consume and process information. When the euclidean 
length of either an agent opinion vector or a message is equal to zero, then we assume that the cosine similarity 
is equal to zero. Note that we obtain a simple SI model when agents share information without considering their 
opinion (or when we set τ = −1 ), and they are allowed to share as many messages as they want in one time step.

Before actually sharing a message that the agent likes, the agent can modify it and create a new message vari-
ant. With probability α the message will be adapted in one of three possible ways: (a) adding a new topic j to the 
message, chosen at random and reflecting agent’s opinion xij on that topic, (b) removing one of topics present in 
the message that do not reflect his opinions, (c) replacing an opinion on one topic present in the message with 
his own (as shown on Fig. 7b). Each of the modifications is equally likely, with probability 1/3 to occur, but only 
a single modification will be done. Users never share the same message (with the same ID) more than once, even 
if the message has been modified, since it is assumed that it will relate to the same event, even if it paints it in 
different colors. Users completely ignore any messages with an ID they have already read and considered before.

We finish the dynamics after a pre-determined number of time steps (each consisting of N single agent 
updates). The dynamics can be represented by the diagram as in Fig. 8.

When testing properties of the model we have introduced two alternative models: a model without competi-
tion and a model without agent memory.

A model without competition differs from the basic one in that in a single update the agent reads all mes-
sages he is exposed to and shares all messages with similarity above τ . This means that each message is always 
considered, effectively making them spread independently from each other, without competition.

The model without agent memory relaxes the restriction on reading and sharing messages the agent has 
already shared in the past. Message ID is not remembered, and thus an agent may read and share the same mes-
sage as many times as it will turn out to be newest message he likes.

Measures. In our investigation we use the distribution of message popularity and average message length 
measures. The popularity distribution is the distribution of number of times Sm a message m has been shared 

Figure 7.  Creation of new messages and possible adaptation of messages when sharing them.
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throughout the whole simulation, including all variants of the message. The distribution shows the probability 
density of the number of shares being a certain value S. In Fig. 6 (and only there) we use variant popularity 
instead of message popularity. This measure counts the number of times a specific variant of a message m has 
been shared throughout the simulation, instead of counting all variants of different messages.

Average length of message is an unweighted average of the individual message lengths over all messages 
within a given popularity bin. �L�(S) =

∑
m:Sm=S Lm/NS , where S is number of shares (argument), m are differ-

ent messages, Lm is length of individual message, Sm is number of shares for message m and NS is total number 
of messages that have number of shares S. Individual message length is an average number of topics over all 
its variants, weighted by number of times given variant was shared. Lm =

∑
v lvsv/

∑
v sv where v are variants 

of message m, lv is length of particular variant and sv is number of shares of given variant. The error bars on 
Fig. 2 represent the standard deviation of the distribution of message lengths Lm , and does not include variance 
of lengths between variants of each message, so it does not depend on distribution of lv for any given message 
(other than through Lm itself).

Datasets. We have used two real network topologies during our research: Facebook and Twitch.
Facebook dataset we have used is available at Stanford Large Network Dataset  Collection61 and comes from a 

paper by McAuley and  Leskovec62. It is an aggregation of ego-networks of several users, with links being friend-
ship relations between users on Facebook. There is some overlap between individual ego-networks, with almost 
all nodes belonging to one connected component. The dataset contains N = 4039 nodes, with E = 88, 234 edges 
giving mean degree �k� = 43.69 . The whole network is highly modular, with  modularity63 Q ≈ 0.834 for com-
munities detected using greedy hierarchical algorithm by Blondel et al.64. The dataset contains additional data 
on users, but they have been discarded for our study and only topology of connections has been used.

Twitch dataset we have used is also available at Stanford Large Network Dataset  Collection61 and comes form 
a paper by Rozemberczki et al.65. It contains users of Twitch as nodes and friendship relations between them as 
links. The dataset contains networks in several languages, but only data for english Twitch is presented in this 

Figure 8.  Flowchart of the algorithm for creation, sharing and modification of messages in our model.
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paper, with N = 7126 nodes, E = 35, 324 edges and �k� = 9.91 . The dataset contains additional data aside from 
the network, but it has been discarded for this study and only topology of connections has been used.

Data availibility
The real network topology data used in our analysis is publicly available at Stanford Large Network Dataset Col-
lection, https:// snap. stanf ord. edu/ data. See section “Datasets” for details.

Code availability
The code for this project is available on GitHub at: https:// github. com/ PatBoj/ mutat ed- infor mation- spread.
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