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Comparison of observer based 
methods for source localisation 
in complex networks
Łukasz G. Gajewski1*, Robert Paluch1, Krzysztof Suchecki1, Adam Sulik1, 
Boleslaw K. Szymanski2* & Janusz A. Hołyst1,3

In recent years, research on methods for locating a source of spreading phenomena in complex 
networks has seen numerous advances. Such methods can be applied not only to searching for the 
“patient zero” in epidemics, but also finding the true sources of false or malicious messages circulating 
in the online social networks. Many methods for solving this problem have been established and 
tested in various circumstances. Yet, we still lack reviews that would include a direct comparison of 
efficiency of these methods. In this paper, we provide a thorough comparison of several observer-
based methods for source localisation on complex networks. All methods use information about 
the exact time of spread arrival at a pre-selected group of vertices called observers. We investigate 
how the precision of the studied methods depends on the network topology, density of observers, 
infection rate, and observers’ placement strategy. The direct comparison between methods allows 
for an informed choice of the methods for applications or further research. We find that the Pearson 
correlation based method and the method based on the analysis of multiple paths are the most 
effective in networks with synthetic or real topologies. The former method dominates when the 
infection rate is low; otherwise, the latter method takes over.

In the last decade, there have been numerous advances in the field of locating sources of diffusion in complex 
 networks1–35. Now, perhaps more than ever, such studies are relevant to the global challenges our societies face. 
Whether it is a viral  pandemic36 or a cascade of  misinformation37 it can be of utmost importance to ascertain 
from where the diffusion  originated38–40. The current literature on this topic is lacking thorough reviews com-
paring multiple methods of source localisation. Those that do  exist41,42 are more introductions to the topic than 
comprehensive comparisons based on computational experiments. While testing all possible variables, scenarios 
and methods is, of course, practically impossible, we hope that our work will fill in at least some of the gaps.

There are many examples of different approaches of how one can tackle the problem of locating a source of 
spread in complex networks. Just to name a few, there are works on locating sources on temporal  networks8,17, 
using a snapshot of states of the whole  system9, efficiently placing  observers10,11 or locating multiple  sources12–16,23.

In this paper, we consider a graph G with N nodes and E links. In this graph, one node becomes the initial 
source of a spread of what could be a biological virus or a post on Twitter etc. We assume that we have a certain 
budget K < N of observers that we can place in the graph G . Only these observers provide information about 
the time they received the information propagating through the network. Knowing this limited information and 
the graph’s topology, we attempt to locate the source using several efficient approaches described recently in the 
literature (see “Methods” section).

We simulate the spreading phenomenon using the Susceptible-Infected  model43 that has been one of the most 
fundamental approaches in this field for almost a century  now44. In this model, each agent ( n ∈ G ) can be either 
Susceptible to or Infected by whatever is diffusing through the system and each Infected node attempts to infect 
its Susceptible neighbours at each time step. The process is parameterised by an infection rate β defining the 
probability of a Susceptible being infected by one Infected in one time step (see “Methods” section for details).

The goal of this paper is to study the combinations of various observer placement strategies and source loca-
tion methods while varying the observer budget K and infection rates β . We are unaware of such an investigation 
in the literature and believe that it could be of great practical value.
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Results
We conduct our experiments on two synthetic network models—Barabási–Albert45 (BA) and 
Erdős–Rényi46 (ER)—as well as on three real world networks. First one is the University of California Irvine 
( N = 1899, �k� ≈ 63.0 , UCI), which contains messages sent among the users of an online community of students 
from the University of California, Irvine in the U.S.47,48. Note that we follow the convention from Spinelli et al.49 
and Paluch et al.11 and modify this graph such that it becomes undirected, without nodes with degree k < 2 
resulting in N = 1022 and �k� ≈ 12.2 . The second one is the University of Rovira i Virgili ( N = 1133, �k� ≈ 9.6 , 
URV) containing email communications at the University Rovira i Virgili in Catalonia in  Spain47,50. The third 
one is Infectious—a network built from human face-to-face interactions during the exhibition INFECTIOUS: 
STAY AWAY in 2009 at the Science Gallery in  Dublin47,51 ( N = 410 , INF). Edges represent contacts which lasted 
for at least 20 s. Only the data from the day with the most interactions was used. The network is characterised 
by highest average degree ( �k� ≈ 84.4 ) among all tested graphs.

Three values of infection rate β are defined: high ( β = 0.8 ), medium ( β = 0.5 ), and low ( β = 0.2)—for a more 
detailed consideration of infection rates see Supplementary Figs. S27–S28. Four observer placement strategies 
are evaluated—Betweenness Centrality (BC)52 that places observers at the nodes with the highest betweenness 
centrality, High Coverage Rate (HCR)10 that maximises the number of neighbourhoods to which the observ-
ers belong, High Variance Observers (HVO)49 which maximises the cardinality of the set of nodes lying on the 
shortest paths between observers, and simply random (RND) as a null model. For location methods, we chose 
the methods introduced by Pinto et al. (LPTV)1 that maximises likelihood estimator using a breadth-first search 
tree approximation, by Shen et al. (TRBS)2 that uses a so-called backwards spreading from observers onto the 
graph, by Xu et al. (PC)5 that relies on the correlation between the topological distance and time of propaga-
tion from the source, by Paluch et al. (GMLA)3 that modifies the LPTV by introducing a special node selection 
method, and by Gajewski et al. (EPL)4 that also modifies the LPTV to account for loops in the graph. Instead 
of showing the results as the function of the observer budget, K, we chose the observer density d = K/N in our 
plots to easily compare systems of different sizes. Finally, we chose precision and CSS α

11 as our evaluation metrics 
(see the “Methods” section for details). Since in the tests, we set α = 0.95 , we will abbreviate CSS α to just CSS.

Figures 1 and  2 present the main result of our work — a handy summary of all the experiments we have 
conducted. The diagrams present precision and CSS scores, respectively. Major columns represent the networks 
(Barabási–Albert, Erdős–Rényi, Infectious, University of Rovira i Virgili, University of California Irvine) while 
major rows correspond to the different infection rates. Each major block presents performance scores for various 
densities of observers d for every combination of a localisation and placement strategies. The relevant observer 
placement strategies are indicated in minor rows (the strategies’ labels are listed at the very bottom of the plot) 
while the relevant localisation methods are indicated by a colour (the colours’ mapping to methods is shown 
at the top of the diagram). Within each minor block (a tile) we show a bar plot of all the localisation methods, 
ordered from the best to the worst (the highest to the lowest for precision with the order reversed for CSS). The 
bar sizes are normalised in respect to the highest score per row, per major block, i.e., per network, infection rate 
and observer density. The asterisks indicate the best combination of observer placement strategies and localisa-
tion methods per row in a major block (see Supplementary Figs. S1–S10 for detailed plots of both precision and 
CSS for all the methods).

The diagrams’ structure has several levels of detail. At the lowest level, we can see the colour and knowing that 
each small tile represents a point in our parameter space we can immediately know which localisation method 
is the best for a given tile. Going upwards, we can evaluate a row of tiles to find, with the help of the asterisk, 
which combination of observer placement strategies and localisation method is the best for our budget. We can 
also compare the values between methods for set density and later analyse how these relations change when the 
density changes by looking at a whole block for a given infection rate and network. At the top level, on the other 
hand, we can use the colour again to observe regions of dominance of some methods over the others, giving 
us a bird’s eye view of the parameter space. Not only are these diagrams useful to analyse the vast amount of 
results we obtained, but they also allow for a swift determination of a suitable method for a similar problem in 
the real world. While obviously our coverage of possible graphs or infection rates etc. is not exhaustive, it can be 
an indicator of where to start the process of method selection. A user of these diagrams may first select a panel 
with the network type closest to the given graph and the infection rate closest to the desired one. Then, the user 
can find the row with the density closest to the desired density and follow the asterisk in this row to identify 
the best method to apply. This is of course a simplified scenario, but it illustrates an intended use of our results.

Analysing the diagrams reveals that the PC and EPL methods dominate the landscape, although the TRBS 
does win in a few cases, e.g., on an Erdős–Rényi graph when the observer density is low (5–10%) and the infec-
tion rate is high. Interestingly, while the GMLA method wins many cases with high densities and low β ’s on the 
URV dataset, it does not take away any asterisks from the PC. Still, making any strong generalisations is difficult 
here. E.g., the EPL and PC methods have their own respective regions—the EPL is usually preferred at high 
infection rates and high densities while the PC mostly thrives in complementary cases of a low infection rate 
and small budget. Observer placement strategy pairing is also quite varied and it does matter what we optimise 
for—precision or CSS. For instance, on a BA graph, the EPL works better with the HVO in terms of precision, but 
when the CSS metric is used, the BC is a better choice. The PC most often seems to pair with BC. Yet again, it is 
not a hard rule. More often than not, it is better to use any placement strategy instead of using randomly placed 
observers, but even this has a significant number of exceptions. E.g., testing methods on the URV network with 
precision as metric, the EPL with the random placement strategy wins a high infection rate scenario in four out 
of five densities. Similarly, for the two highest densities on an ER graph in terms of precision, the EPL pairs best 
with random placement strategy. It is also apparent that the graph structure affects the best placement strategy. 
For instance, when optimising for precision on a BA graph, HVO and BC are usually the best while in an ER 
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scenario, the HCR strategy dominates. It is important to recognise that due to the complexity of source localisa-
tion, often there is no single best answer. When choosing an appropriate localisation and placement strategies, 
one must carefully assess the many features of the system.

The rest of this section is dedicated to a more detailed look at the particulars of the experiments we have con-
ducted. Looking at the results for the Barabási–Albert model ( N = 1000, �k� = 8) , we can see that for low and 
medium infection rates, the PC method is most successful. However, for high infection rate, the EPL takes over. 
In terms of observer placement strategies, when β is low, the random placement strategy is definitely the least 
effective, while the BC is slightly better than the remaining others. For medium and highly infectious regions, the 
HVO takes the lead. Interestingly, the trends suggest that the GMLA using the BC or HCR placement strategies 
with high observer budget would win over the PC.

Regarding the CSS metric (for which a low value indicates a high performance) and for low values of infection 
rate, the PC method dominates again. However, for medium and high values, the PC is in a close competition 
with the EPL. Similarly to the precision results, the random placement strategy gets the worst results, while other 
strategies perform closely to each other when β is large. For medium and low β , the BC and HCR placement 
strategies take the lead.

Examining results for Erdős–Rényi networks, we see a bit different behaviour. The PC method is the most suc-
cessful across the board with EPL being only ever so slightly lower, but for the high infection rate, the EPL takes 
over the PC. However, the previously observed GMLA trend is practically absent. Random placement strategy 
performance is clearly behind the others that perform closely to each other. These outcomes are observed for 
both metrics, precision and CSS.

We notice that rather peculiar values of the CSS metric may arise for the GMLA method. This method uses 
a localised gradient-like search for potential sources. Hence, it occasionally fails to even calculate likelihood for 
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Figure 1.  Summary diagrams of precision metric results for all tested networks (major columns) and infection 
rates β (major rows). The colours indicate the localisation methods, whereas observer placement strategies are 
marked per (minor) column in each block (labels are placed at the very bottom of the plot), while minor rows 
represent observer densities d. Bars within minor blocks show all methods, ordered from the best to the worst 
(a high precision indicates a high performance), with the background colour of the minor block indicating the 
best localisation method. The asterisk indicates the best localisation and placement strategy combination per 
row within a major block, i.e., for a given density, topology and infection rate. Bars are normalised to the highest 
score per graph, infection rate, and density.
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the true source. In such a case, all nodes get a maximum ranking equal to the size of the whole graph, resulting 
in this peculiar value that no other method delivers.

The results on the synthetic networks favour the PC method in most cases. This method also happens to be 
one of the fastest among those that we test in this review. Table 1 summarises the theoretical and experimental 

Table 1.  Computational complexity of the tested methods. We estimated the listed experimental complexities 
for this review. However, the values of coefficients may change for networks of different sizes or when different 
hardware or software is used for test execution. For the details on theoretical complexities derivations as 
functions of observer density, and system size, see the Supplementary Information Sec. Computation time.

Method Theoretical complexity Experimental fit ln(time) = a ln(size)+ b Comments

GMLA O(N3/2 logN) a = 1.24(5), b = −7.0(6) ∼ N1.2
Much faster than the EPL and scales better than the LPTV, yet, slower than the PC and the 
TRBS at low densities or small graphs. At high densities or very large graphs, it is the fastest of 
all the methods

LPTV O(N2) a = 3.20(24), b = −16.3(2.0) ∼ N3.2 In our tests, the complexity turned out to be higher than declared due to the matrix inversion 
operation. One of the slowest methods

EPL O(N2) a = 2.17(11), b = −7.99(97) ∼ N2.2
In our tests, it was the slowest of all the methods due to the very high constant factor (initial 
cost). However, for high densities or very large graphs, it can actually be faster than the LPTV. 
Appropriate pre-computing is also possible to mitigate the costs

TRBS O(N2) a = 2.17(12), b = −10.4(1.2) ∼ N2.2 One of the faster methods, alongside the PC, except for high density or large scale graphs

PC O(N2) a = 2.17(12), b = −10.4(1.2) ∼ N2.2 One of the faster methods, alongside the TRBS, except for high density or large scale graphs
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Figure 2.  Summary diagrams of CSS metric for all tested networks (major columns) and infection rates β 
(major rows). The colours indicate the localisation methods, whereas observer placement strategies are marked 
per (minor) column in each block (labels are placed at the very bottom of the plot), while minor rows represent 
observer densities d. Bars within minor blocks show all methods, ordered from the best to the worst (a low 
CSS value indicates a high performance), with the background colour of the minor block indicating the best 
localisation method. The asterisk indicates the best localisation and placement strategy combination per row 
within a major block, i.e., for a given density and topology. Bars are normalised to the highest score per graph, 
infection rate and density.
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complexities of each method with respect to the system size. It also includes comments regarding the practical 
considerations. While the tested methods do not seem to differ much in theoretical complexity, their speeds 
differ in experimental testing—see Supplementary Figs. S11–S12, where we show execution time measurements 
as a function of both densities and system sizes.

The PC and TRBS are usually the fastest, although the GMLA catches up with them for high observer densities 
or on large graphs, and can become the fastest. The LPTV and EPL are the slowest. However, for small observer 
densities, the LPTV is much faster than EPL. For high densities, the EPL does not slow down much while the 
LPTV slows dramatically so much that it can even become slower than the EPL for some graphs. Similarly, for 
large graphs, the LPTV could become slower than the EPL because the former’s experimental complexity is 
slightly higher. While we focused here on synthetic graph with �k� = 8 , the conclusions for both BA and ER hold 
for other values of 〈k〉 as well—see Supplementary Figs. S15–S26.

Below, we will analyse the performance of search methods on real world networks. Examining the precision 
on the University of Rovira i Virgili network, once more, for low and medium infection rates, the PC method 
dominates, while for high rates, the EPL tops the ranks. The GMLA outperforms the PC method at low β when 
both use the HCR or random placement strategy. However, the PC method combined with BC source localisa-
tion method wins decisively in this infection rate region. For medium β , the HVO placement strategy dominates 
for high observer densities. Finally, for the high infection rate, random placement strategy performs best with 
the EPL.

When the CSS metric is used, the outcomes are very similar to those seen for synthetic networks; the PC 
dominates in low β , while the PC and the EPL jointly (with few exceptions) take the lead and for this and other 
cases, the BC placement strategy is the best. We also observe an over-saturation effect when running the PC 
with the HVO placement strategy for low infection rate (see Supplementary Fig. S3 for the precision curve for 
this pair of methods). It exhibits a maximum for the value of observer density around d = 0.2 . Such saturation 
itself is a somewhat expected behaviour since with N tending to infinity, the contributions of each subsequent 
observer are diminishing. However here, we see that these subsequent observers can in fact drastically impede 
the performance.

The precision results for the University of California Irvine network are distinctly different from the results for 
other graphs. The most significant is the big difference between performances of the placement strategies. The 
BC strongly dominates in combination with the PC for small β . While previously PC dominance continued to 
medium β , here actually the EPL combined with the HCR observer placement strategy outperforms the PC. The 
EPL continues to lead to into high infection rates using the HVO or random positioning placement strategies.

When the CSS metric is used, the outcomes are very similar to those with precision metric. Some differences 
arise for the very low observer densities, where the PC is slightly ahead of the EPL, but in the medium infection 
rate range when observer densities exceed 0.1, the EPL outperforms the PC.

The Infectious data set exhibits qualitatively similar behaviour to the other real world graphs in the sense that 
PC and EPL dominate over other methods, with occasional appearance of GMLA taking the lead with regards to 
precision. An interesting difference in comparison with UCI and URV is the rather consistent advantage of the 
HVO placement method, even in low infection rate realm where BC would be the usual winner. This suggests 
that while location methods have clear leaders (PC and EPL), as far as observer placement is concerned, a more 
detailed and graph specific approach is recommended.

Discussion
The main objective for the paper is to provide a comprehensive quantitative comparison of methods for locating 
an unknown source of spreading process in a known network based on sparse observational data. We have done 
so by comparing accuracy of several chosen methods in locating the source of a simulated Susceptible-Infected 
process in synthetic and real networks. The results demonstrate that the methods significantly differ in accuracy 
and execution times. The method effectiveness depends on such factors as network topology, density of observers, 
method used to place observers and even specific measure of accuracy used.

While there is no clear single winner among the methods, the study shows that two methods stand above 
others: a simple Pearson Correlation (PC) and an Equiprobable Links (EPL), with the PC being best for noisy 
processes with low infection rate β and the EPL being best for relatively predictable—yet rapid, aggressive—
processes with high β . While the comparison is interesting in itself, it also allows a more informed choice of 
methods to use in practical applications. It may be especially interesting to understand why these two methods 
yielded best results.

The PC method relies on a simple correlation between distance from source and the time it takes for infec-
tion to spread. It offers surprisingly high accuracy given how few assumptions and calculations it makes. Unlike 
methods that incorporate variance (LPTV, GMLA, EPL), it makes no assumptions regarding the distribution of 
the time it takes to propagate infection along a link. Still, the method only assumes that the mean time should 
be proportional to distance. It means its assumptions fit well a wide range of scenarios. It is somewhat similar 
to the TRBS, in that it relies on distance from source, but unlike the TRBS, the former does not actually assume 
what the mean delay should be, which may be a reason why it handles situations with high uncertainties, such 
as few observers and low infection rate, better than the TRBS or any other method.

The EPL method is the most complex of the investigated methods and explicitly considers the existence of 
parallel paths. It assumes the normal distribution to calculate expected variances, which is not consistent with 
actual delay distributions of Susceptible-Infected processes that have geometric distribution. Multiple paral-
lel paths affect not only variances and covariances of the expected times to arrive at observers starting from a 
specific potential source, but also their mean  values4. While the distribution assumptions are mismatched, the 
inclusion of parallel paths allows this method to best predict the actual characteristics of the spreading process 
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and pinpoint the source with the best accuracy. However, the performance weakens when the spreading process 
is highly random. This is because the mismatch between natures of assumed and actual distributions increases. A 
large mismatch lowers the performance. This seems to suggest that the key to the accuracy of these two methods 
is their ability to cope with full network structure, either by making assumptions simple and general enough 
to encompass non-treelike structure, or explicitly using that structure for its prediction. This means that the 
inclusion of the full network structure may be key in development of even more accurate methods, even if it is 
mathematically challenging. Our work also shows that the choice of the observer placement strategy may play 
a significant role in overall effectiveness of the search for the source. While the choice does not seem crucial for 
simple random graphs, the differences in more complex networks is significant—choosing observers based on 
Betweenness Centrality may improve precision of the PC method over a random placement strategy even by a 
factor of two, but on the other hand it may actually decrease precision of the EPL method.

The paper describes the current state of the art, but much is yet unknown. As clearly seen from our results, 
the network structure can heavily affect which localisation method and observer placement strategy work the 
best together. The nature of the spreading process itself and the observer budget are very significant as well. 
From our experiments, we can suspect that network features such as degree distribution, clustering coefficient 
or mean degree have a great impact on the efficacy of the tested methods. Observer placement strategies differ 
strongly between a scale-free and random graph (degree distribution effect). Similarly, such a difference between 
the real world graphs is difficult to ignore as well. The choice of the performance metrics is also important as one 
method can be the best in terms of precision but not in terms of CSS, and vice versa. It is something that should 
be remembered when determining which approaches to use our results in real world applications.

We hope that the comprehensive results we presented in this paper will serve readers well in both choosing 
the right methods when building practical applications and focusing on the right topics of further research.

Methods
Spreading process. We use an agent-based version of the Susceptible-Infected  model43 to simulate the 
spreading process across the system. Each agent in this model may be in one of two states: susceptible (S) or 
infected (I). Since we conduct our experiments on graphs, each vertex (node) represents an agent and each edge 
(link) is a part of a possible spreading path. In the beginning of the simulation, we chose one vertex at random 
and set its status to infected. This node is the true source that the tested methods will attempt to locate. At each 
time step, the infected agents interact with their neighbours, such that every susceptible neighbour can become 
infected with a probability β—the so-called infection rate. To simplify the tracking of propagation paths and 
infection times, the dynamics of our model is synchronous, which means that at every time step, all infected 
nodes try to pass the infection simultaneously to their all susceptible neighbours.

This is in contrast, for example, to a normal distribution approach used by Pinto et al.1 that can generate 
certain awkwardness we would like to avoid. It is potentially possible to cause a “time travel” scenario when the 
weights drawn are negative, thus requiring the normal distribution to be appropriately  truncated53. Such trunca-
tion naturally changes the moments of the distribution and thus introduces errors to our estimators. Additionally, 
the normal distribution does not directly model any common spreading phenomena such as epidemics or fake 
news cascades. In this paper, we study the effectiveness of source localisation using the SI model even if it is in 
disagreement with assumptions required by the tested methods.

Evaluation metrics. We use two efficiency measures in this paper: the average precision and the Credible 
Set Size.

Precision. The precision for a single test is defined as the ratio between the number of correctly located sources 
(i.e., true positives, which here equals either zero or one) and the number of sources found by the method (i.e., 
true positives plus false positives, which here is at least one). The tests are repeated multiple times for different 
origins, many graph realisations (for synthetic networks) and then the obtained values of precision are averaged.

Credible Set Size. The Credible Set Size at a chosen confidence level of α ( CSS α ) is a novel metric introduced by 
Paluch et al.11. It represents the size of the smallest set of nodes containing the true source with the probability α . 
In other words, it allows us to determine how many nodes with the highest score must be labelled as the origin 
of the spread to reach probability α of the true origin being among these nodes. We compute this probability as 
the hit rate (recall) from many realisations of signal propagation and source localisation.

Observer placement strategies. Betweenness centrality: BC. It is a fairly simple but effective heuristic 
that selects those nodes that maximise a measure called betweenness centrality52, computed independently for 
every node v ∈ V  as

where σ (v)
ij  is the number of shortest paths between nodes i and j which contain v and σij is the total number of 

shortest paths between these nodes.

(1)
SBC = argmax

S

∑

v∈S

∑

i, j ∈ V
i �= j �= v

σ
(v)
ij /σij ,
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High coverage rate: HCR. This  method10 selects such a set of observers SHCR that maximises the number of 
unique neighbours of observers. Neighbours of observers are labelled as covered, and the fraction of such cov-
ered nodes in the network is called the coverage rate CS and formally defined as:

where K is the number of observers, Ti is the neighbour set of the observer oi and N is the size of the network. 
We seek such a set SHCR that maximises CS.

This method quite naturally saturates, i.e., it is possible to get coverage rate of one while the density of observ-
ers is smaller than needed for testing. Such saturation is desired in real world applications, but it can pose a 
problem when comparing this method with others. To avoid this problem, we extend this approach such that 
the observers are chosen greedily, one by one, and each new observer increases the coverage rate until it reaches 
unity. Then we select observers maximising the number of nodes which have two observers as their neighbours 
(double-covered nodes). We continue similarly to find the maximum number of triple-covered nodes and so on 
until the desired density of observers is reached.

High variance observers: HVO. This  method49 uses a path covering strategy. One seeks such a set of observers 
SHV-Obs(L) that maximises the cardinality of the set of nodes—PL(S)—lying on the shortest paths of length at 
most L between any two observers in the set S.

This approach performs best when the density of observers is small since then PL(S) increases quickly and can 
easily include all nodes in the network. We extend this method as well similarly to the case of the High Coverage 
Rate method. A node which lies on an exactly one shortest path of length at most L between any two observers 
in the set S is called the single-path-covered while a double-path-covered node lies on two shortest paths, triple-
path-covered lies on three shortest paths and so on. We select greedily the observers maximising the number 
of single-path-covered nodes until all nodes are single-path-covered. Then the number of double-path-covered is 
maximised and we continue in this manner until the desirable density of observers is reached.

Random: RND. We consider it a suitable null model for observer placement strategy to simply distribute them 
randomly in the graph.

Source localisation. Here, we briefly describe each of the procedures used to estimate the source of a 
propagation. Each method shown here in essence calculates a score for each node s denoted as F (s) . Then, the 
estimated source ŝ of the propagation on a graph G is each node with the highest score, more formally:

Pinto, Thiran, Vetterli method: LPTV. Pinto et al.1 introduce a maximum likelihood estimator of the form (3), 
show it is optimal on trees and that it is quite successfully applicable to general graphs. The method is conceptu-
ally similar to locating a cell phone using information about this phone from the telecommunication  towers54.

Let |P (u, v)| denote the length of the path P (u, v) connecting nodes u and v, d the vector of observed delays, 
µs the vector of deterministic delays, and �s the delay covariance matrix, then the score is:

where:

In the original paper, the authors use the information about the node that sent the signal to the given observer. 
We do not use this information, as it is not always available in real world scenarios. Therefore from now on, 
when we refer to the LPTV, we mean a limited information variant of it. The same limitation applies to other 
works cited in this paper.

Time reversal backwards spreading: TRBS. Shen et al.2 propose a method that conducts so-called backwards 
spreading. In essence, it finds topologically shortest paths from the observers to a potential source and compares 
those to observed reception times. More precisely, it constructs a vector T where [Ts]i = di − [µs]i for each 
observer i and node s. We are using notation consistent with the one used in (4). However, there is no reference 
observer needed in this approach, so:

(2)CS =

∣

∣

∣

⋃K
i=1 Ti

∣

∣

∣

N
,

(3)ŝ = argmax
s∈G

F (s).

(4)F (s) = µT
s �

−1(d −
1

2
µs),

(5)

[d]k = tk − t0,

[µs]k = µ(|P (s, ok)| − |P (s, o0)|),

[�s]k,i = σ 2|P (o0, ok) ∩P (o0, oi)|, for k, i = 1, . . . ,K − 1.

(6)
[d]k = tk ,

[µs]k = µ|P (s, ok)|, k = 0, . . . ,K − 1.
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The node that is most likely the source is the one that minimises the variance of the vector T. To keep the 
scoring consistent with other methods and Eq. (3) we define the score function as:

Pearson correlation: PC. Xu et al.5 present two hypothesis (we quote verbatim):

• “The distance between the neighbour node who transmits the epidemic or information to the observation 
node and the source node should be closer to the distance between the observation node and the source 
node.”

• “The temporal order of the observation nodes getting infected or informed should be consistent with the 
length order of the distance between the observation nodes and the source nodes.”

The authors use Pearson correlation coefficient as the measure of the correlation between the topology of the 
network and the infection times. Thus, the score definition in this case is:

Gradient maximum likelihood algorithm: GMLA. A modification of LPTV presented by Paluch et al.3 intro-
duces two improvements: a limited number of observers, and a gradient-like selection of suspected nodes. The 
first is motivated by realisation that observers that are very far from the spread source make a very small con-
tribution to the score in comparison to the nearest observers, while those distant observers greatly increase the 
cost of information processing. It is very likely that the source of the spread is in close proximity to the observer 
with the smallest recorded time (the observer one) and so the method only uses K0 observers with smallest 
recorded times for calculating scores. The procedure starts by calculating the scores of the nearest neighbours 
of the observer one and then selects a neighbour with the highest score. Next, the method goes forwards from 
this node and calculates scores for its nearest neighbours looking for a node with a score greater or equal to the 
current maximum. This process continues until all neighbours have a score lower than the current maximum.

Equiprobable links: EPL. As shown by Gajewski et al.4 the assumption of a tree-like propagation is not always 
satisfied. Treating paths as random variables makes the actual expected time of traversal equal to the first 
moment of a minimum distribution of all paths connecting two nodes. Similarly, covariances between observers 
become covariances of multivariate minimum distribution. Since establishing general expression for such mini-
mum distribution of an ensemble of n paths is a non-trivial  task55, even with an identically and independently 
distributed random variables  approximation4, one can settle for a known analytical formula in the case of n = 2 
discussed by Nadarajah and  Kotz56:

L e t  Y = min(X1,X2) w h e re  X1,X2  a re  k n ow n  G au s s i an  d i s t r i but i ons  s u c h  t h at 
E[Xi] = µi ,E[X

2
i ] − E[Xi]

2 = σ 2
i  , and �,φ are respectively the cumulative distribution function and pdf of the 

standard normal distribution. Thus

where ρ is a correlation coefficient between the distributions X1,X2 that in case of paths we define as number of 
common edges between the paths P1,P2 normalised by the length L of the path:

Using the above equations, we can compute the deterministic vector µs as well as the covariance matrix � as 
defined by Eq. (4). While the former is quite straightforward, the latter is not. We get µs by treating each short-
est path i as a random normally distributed variable with mean Lµ , variance Lσ 2 correlated with another path 
j - ρ(i, j) . Since we are using a two-path approximation described above, for n > 2 paths, we assume there are 
exactly two paths with ρ = 0 and mean defined by Eq. (9).

To compute the covariacne matrix � that we use in the EPL, we apply the same score function as in the LPTV 
defined by Eq. (4).

Let Ei represent a set of paths connecting node oi to the reference observer o0:

(7)F (s) = −Var(d − µs).

(8)F (s) =

∑K−1
i=0 ([µs]i − µs)(di − d)

√

∑K−1
i=0 ([µs]i − µs)

2
∑K−1

i=0 (di − d)2
.

(9)E[Y ] = µ1�
(µ2 − µ1

θ

)

+ µ2�
(µ1 − µ2

θ

)

− θφ
(µ2 − µ1

θ

)

,

(10)E[Y2] = (σ 2
1 + µ2

1)�
(µ2 − µ1

θ

)

+ (σ 2
2 + µ2

2)�
(µ1 − µ2

θ

)

− (µ1 + µ2)θφ
(µ2 − µ1

θ

)

, with

(11)θ =

√

σ 2
1 + σ 2

2 − 2ρσ1σ2,

(12)ρ =
P1 ∩P2

L
.

(13)Ei := {P1(o0, oi),P2(o0, oi), . . . ,Pn(o0, oi)},
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where Pi(x, y) is an i − th path between vertices x and y. Using Eq. (4), we define the covariance matrix in which 
each element is a measure of the correlation between the sets of paths:

where {ei} is a set of edges of all (shortest) paths connecting node i with the reference observer. A possible inter-
pretation of using an intersection instead of a union is that we consider each edge equally likely to be a part of 
propagation. Here, of course, we use a measure of correlation known as the Jaccard  Index57.

Experimental setting
Simulations on Barabási–Albert and Erdoős–Rényi graphs were conducted on a machine with the AMD®Ryzen 
7 1800X while those on University of Rovira i Virgili, and University of California Irvine datasets were run on 
the Prometheus cluster node made of two Intel Xeon E5-2680 v3  processors58 Experiments depicted in Supple-
mentary Figs. S5, S10, S15–S28 (in Supplementary Information) and on the Infectious dataset were performed 
on an AMD®EPYC 7452 machine.
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