PHYSICAL REVIEW E VOLUME 60, NUMBER 1 JULY 1999

Theory of oscillations in average crisis-induced transient lifetimes
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Analytical and numerical study of the roughly periodic oscillations emerging on the background of the
well-known power law governing the scaling of the average lifetimes of crisis induced chaotic transients is
presented. The explicit formula giving the amplitude of “normal” oscillations in terms of the eigenvalues of
unstable orbits involved in the crisis is obtained using a simple geometrical model. We also discuss the
commonly encountered situation when normal oscillations appear together with “anomalous” ones caused by
the fractal structure of basins of attracti¢81063-651X99)02407-]

PACS numbds): 05.45.Ac

I. INTRODUCTION or of the orbitB for homoclinic crisis:
Crises[1] appearing in nonlinear dissipative systems ex- log|\,|
hibiting deterministic chaos are abrupt changes undergone by Y=o 3

a chaotic attractor due to its collision with an unstable peri- 2logiA 127

odic orbit B, When_r_:l system parametgr varied continu-  The power law(1) and the formulag2) and (3) have been
ously, crosses a critical valyg;. The phenomenon can also ¢onfirmed in many numerical and experimental studées.,
be described as the collision of the stable manifef of B [4_g]).
with the unstable manifoldv{" of another orbitA of the However, it has also been noticgd,3] that Eq.(1) de-
same period embedded in the attrad¢tweteroclinic crisisor  scribes only the general tendency of the funcfitgp—p.),
the unstable manifoldrvf,B) of B itself (homoclinic crisis. and imposed on it one can observe some oscillati@fs
One of the branches of the stable manifmﬁ‘) is the bound- Figs. 3 and #resulting from a raggedfracta) measure of
ary of basin of the attractor, which is in turn the closure ofthe chaotic attractor colliding with its basin of attracti@].
one of the branches of the unstable manifoigl. In the case of a homoclinic crisis their period on a log-log
In the dynamics after crisigfor p=p.) characteristic plot of T(p—p;) is |[log[\,||, and their amplitude is large for
transients apped2]; the system remains for some time on small |\,|. These oscillations have been indicated as a po-
the former (precritica) attractor, which is now a chaotic tential complication to verifying the scaling lai®) and de-
saddle. In the case of laoundary crisisthe transient is fol- termining the critical exponent. Further on we shall refer to
lowed by a definitive escape to some other attractor in théhese attractor induced oscillationsrammal oscillations
phase space, while after amerior crisis transients are in- Recently[9] we studied another kind of oscillation caused
terrupted by(typically shor} bursts to an extension of the by the intertwined(typically fracta) structure of precritical
precritical attractor. After arattractor merging crisiswe  basins of attractiofil0,11]. We called themanomalousbe-
have intermittent jumps between symmetric precritical partsause of the appearance of increasing pieces of the function
of the attractor. T(p—p.), contrary to the general decreasing trétyl The
For a large class of dynamical systems the tintieat the = maximal amplitude of the oscillations has been calculated
system stays on the precrisis attractor has an exponentigbing a simple model of a self-similar intertwined basin. Os-
probability distribution Pr(t)=(1/T)exp(—(t/T)) with a cillations of both kinds can be noticed of(p—p.) plots

mean valueT obeying a power scaling lay2] obtained for crises in different systems studied numerically
[12] and experimentally5].
T~(p—po) 7. (1) In this paper we derive a formula for the amplitude of the

attractor-induced oscillations in systems that can be reduced
. . L to two dimensional maps for the generic case when the tan-
For most two-dimensional dissipative maps, the exponent gency of manifolds at the crisis point is quadragec. 1). In

>0 can be expressed in terms of the eigenvaldgs gec || the typical case when both kinds of oscillation ap-
(IN1]>1) and\, (|\,|<1) of the saddle orbif for hetero- pear together is discussed.

clinic crisis[2,3]:
II. ATTRACTOR-INDUCED OSCILLATIONS

1 log|n|
=37 llog|\ 5|’ @ As a consequence of crisis the chaotic attractor becomes a
chaotic saddle, and almost every point, after a transient of
average lengtiT, finally diverges from it. However, fop
*Electronic address: kacper@if.pw.edu.pl =p. we can define gseudobasiras a set of initial condi-
TElectronic address: jholyst@if.pw.edu.pl tions evolving to the saddle after, sa iterations, where
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FIG. 1. Model attracto®(, for n=k+ 1 penetrating the basin of -9 R L -1
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FIG. 2. Plot of the functionT(r) for the model crisis at the
M<T. The structure of the pseudobasin is very similar toparameter valuea=1, a«=0.01, and»=0.01. The slopey=1.35
that of the real basin before crisis. In what follows, we shall[Eg. (8)]; amplitude of oscillation$s=1.32[Eq. (13)].
refer to the complement of the postcritical pseudobasin as the
basin of escape, for the trajectory leaves the chaotic saddkome large enough but finitegives a sufficient approxima-
soon after entering it. tion. Furthermore, in the real fractal set each segment,of
The average transient tinTeis proportional to the inverse denoted byA; has its own infinite fine structure, giving rise
of the measurew of the part of the saddle overlapping the to a noninteger total fractal dimension. We ignore it in our
basin of escapg2], model because it makes only a secondary contribution to the
investigated oscillations. The parametecorresponds to the
absolute value of the contracting eigenvalugof the orbit
(40 A(B) for a heteroclinic(homoclinid crisis and determines
the period of normal oscillations &f(r) in log-log scale.

T(p—pc)~m.

A. The model of the chaotic saddle B. Amplitude of normal oscillations

In order to assess the amplitude of normal oscillations we
introduce a model of the fragment of the chaotic attracto
(which becomes a chaotic saddle at the crisis paiolliding
with the boundary of its basin of attraction. Assume that th
half-planey<0 is the(nonfractal basin of escape. Imagine
as the first approximation, that the chaotic saddle in the

Now consider the postcritical situation with>0 (Fig. 1),
'When the attracto®(,, slides into the basin of attraction. Fig-
ure 2 shows the average transient lifetimas a function of

§ obtained by taking the relatiof#) as an equality. We can

' see the linear trend according to the power [dy and ad-

g ; ) ) V"ditionally periodic oscillations imposed on it. The steps cor-
cinity (_)f (tlr;e tanger.my p20|nt consists o{l)two para_bOI'Czseg'respond to collisions of consecutive segment8(pfvith the
ments:A;7={(x,y):y=x"+a-r} and Az"={(X,Y):y=X"  paif nlaney<0, so their period equaléog;yal. Our aim is
—r}. The measure. of the considered fragment is distrib- (5 gerive the amplitude of the oscillations. In the first step,
ut(%j uniformly along both segrrzle)nts, its part falling on 1ot s calculate the slopg. To do this, consider one period
Az and the remaining + 7 on Ay”, 7€ (0,1). The quan- ot ogcillations forr e[ ¥, o 1] (see Figs. 1 and)2 For
tity r~p—p. corresponds to the bifurcation parameter of theg 4| r, when \r>r is valid, the length of the parabola
system measured as the distance from the crisis point. In thfectiony=x2+c—r that entered the basin of escape is ap-
second step we aSSLfZTe that the segzniéfni:ls compose?lz)of proximately equalr —c (for r>c). Thus, the measure of
two subsegmentsA;”={(x,y):;y=x"+aa-r} and Aj the attractor in the basin of escape can be written as
={(x,y):y=x?—r}, a<(0,1), with the measure distribution
w(APY=n(1-7), u(A?)=5?. Further on, a similar split w(r)= 7" 1Jr + 751 — ) \r— ok (6)
of AP into AP={(x,y):y=x*+a’a—r} and A

={(x,y):y=x>—r} with w(AP)=1-75)7% wu(AP) We assumedi=k+1 in Eq.(5), neglecting the further split-
= 7° follows. In this manner in theth step of the above ting of Ay, ,. The slope is

rocedure we obtain a sef, of parabolic segments
P o otp J log T(a*)—log T(a*" 1)
n Y=
Ay= U AUA 1, 5 lloga|
i=1

)

Using Egs.(4) and (6) and applying the approximation

where A={(x,y):y=x2+aa "1-1}, p(A)=(1-n)n L Ve T-l~a MEfor <1, we get
andA, . 1={(x,y):y=x2—r},u(Ans+1) = 7" (cf. Fig. 1). The
set®l, is characterized by two parametersand #; the ad- y= E n Io& ®)
ditional parametea just shifts the scale and is not important 2 loga’
in further calculations.

To get the model of a real chaotic saddle we should, ofComparing Eqs(8) and (2) and remembering that=|\,|,
course, pun—oe, but due to the limited precision in deter- we note that for a heteroclinic crisis=1/\,|, so the pa-
mining p—p. in any measurement or simulation, taking rameters has a simple interpretation in this case.
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The quantityD =1+ log 7/log « is the pointwise dimen-

sion of the attractor at the tangency point, it can be calcu- 8

lated directly from the definition13] applied to%2!, with n
—o0, Equation(8) is in accordance with the relatiop=D

—1/2, which has been derived on the basis of the geometrical

consideration iff14].

In order to calculate the amplitude of oscillatiofiscon-
sider the derivativel(log T(r))/d(logr) [cf. Eqs.(4) and(6)];
it increases monotonically from~ atr= ak+ and tends to
—1/2 for r—aX? (see Fig. 2 At a value of r =xa,x
e (1,1/) the function logyT(r) is tangent to its lower
bounding line and the derivative

dlogT(r)

dlogr RS ©

r=xak

The amplitude of oscillations can be calculated as the dif-
ference of the function logT(r) and its upper bounding

line atr =xaX:

6={log T(a*)— y[log(xa¥)—log a¥]} — log T(xaX).
(10

From the condition{9), using Egs(4), (6), and(8) we get,
after some algebra,

X= (11
where
k=(a~(r"¥2—1)2, (12
Putting Eqs.(4) and (6) into Eq.(10) we get
X+ Vr(x—1
5= Iog\/_;y(), (13
X

with x andx determined by Eqg12) and(11), respectively.

The amplitudes may be considered as a function of two

variablesa andy. Taking into account thak=|\,| and the
exponenty is given by Eq.(2) or Eq.(3), § (similarly to )

can be expressed in terms of the eigenvalues of the unsta

periodic orbit involved in the crisis.

We can also define the width of the belt containing oscil-
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FIG. 3. Average transient length after the heteroclinic boundary
crisis in the Heon map forJ=—0.1 andp,=1.8032398... .
The dashed lines indicate the amplitude of the attractor-induced
oscillations calculated from our model, EG.3). The standard de-
viation is of the order of or below the size of the plotted points.

Consider, for example, the crisis al,=—0.1 and p,
=1.8032398... . Forp<p, there is a chaotic attractor
that becomes a chaotic saddle after collision with an unstable
fixed point atp=p.. (heteroclinic crisis The basin of attrac-
tion is solid(no intertwined structudenear the boundary. For
p=p. a typical orbit remains on the saddle for some titne
and then rapidly diverges to infinity. Figure 3 shows the
average length of the transients as a function of the distance
from the crisis point. At every particulgr the lengths of the
transients were measured and averaged over a set of initial
conditions from the basin of the precritical attractor. Oscil-
lations superimposed on the linear trend wjt-0.729, ac-
cording to Eq.(2), can be seen. Their average period is ap-
proximately|log;g\,|=1.3. The dashed lines of the slope
mark the amplitude of oscillationd~0.16 calculated from

Eqg. (13). On can see that it gives a good estimate for the size
of the observed oscillations.

[ll. CLOSER TO REALITY—BOTH KINDS
OF OSCILLATIONS COMBINED

A. Anomalous oscillations

As we have already mentioned in the introduction, an-
other kind of oscillation imposed on the general trend de-
scribed by Eq(1), resulting from the intertwined structure of
t]he precritical basins of attraction, may often be encountered.

bi&t us briefly recall the model we developed[B] in order

to assess the maximal amplitude of the anomalous sections.
We defined the basin of escafhat was just the half-

lations 5= 6/'y”+ 1 (see Fig. 2 as the quantity describing plane y<0 in the preceding sectiorin the vicinity of a

the real visibility of the oscillations, unaffected by the slopecoliision point as a self-similar s@,, of stripes of the width

v. The widthé is an increasing function of and a decreas- B'bg accumulating at the geometric rageto the liney=0:

ing function of @. The latter fact, as was mentioned, has N

already been noticed previoudl§] for homaoclinic crises. B, = U {{x,y}:y>— BbAy<—Bb+ Bbg}
i=0

C. Numerical example: Boundary crisis in the Heon map

u{x,y}:.y>—8""1b/A\y<0}. (15

We applied the formulg13) to boundary crises in the
Henon map,

As a model attractor, in turn, we took a single parabola
y=x2—r (this would correspond t@l, from the previous
mode). The meaning of the quantitigsandr is similar to
that in the model from the preceding section.

Xn+1™= p_xﬁ_\]ynv
(14
Yn+1=Xn-
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10 ating orbitB, whose stable manifold/®) is the basin bound-
ary[10]. For homoclinic crises in strictly dissipative systems
when |\j\,|<1 the period of anomalous oscillations
|log B|=|log\4| is always smaller than that of the normal
oscillations|log a|=|log \,|.

B. Numerical example: Heon map

As an example let us look at the average transient life-
-6 -4 -2 0 times after a homoclinic boundary crisis that occurs in the
0P Hénon map(14) at J,=0.3 andp.=2.12467248.. .. . If
we make the log-scale plot af(p—p.), Fig. 4 (hereT is

FIG. 4. Average transient length after the homoclinic boundary@gain the length of chaotic transient before the escape to
crisis in the Haon map forJ=0.3 andp,=2.1246728 ... . The infinity, averaged over a set of initial conditionsneasuring
dashed lines indicate the amplitude of the attractor-induced oscilla¥ with appropriate accuracy and marking subsequent points
tions calculated from our model, E(L3). Tiny peaks of anomalous densely enough, we can see tiny anomalous peaks with av-
oscillations are visible. erage period 0.9%|log\,|, where\ , is the expanding eigen-
value of a period 3 orbiB mediating in a crisis. These os-
cillations are superimposed on the linear tre(id and,
dominating here, oscillations due to the ragged measure of
the chaotic attractor. Again, the dashed lines show the am-

Plotting logT(r), as in Fig. 2, we get saw-shaped oscilla-
tions of the periodlogg| determined by the scaling factor of
the basin of escape, superimposed on a linear trend. Anom
N sequon; appear WheT¢r) is increasing. Ca_rrymg Ol.Jt a plitude of the normal oscillations calculated from E3).
calculation similar to that fory from the preceding section, Using the formula(16) we can calculate the maximal am-
we obtained an expression for the amplitude of the anoma-,. 9 S : .
lous sectionss =log T(r,)—10gy, T(r1), wherer; andr, de- plitude of anomalous oscillationA=0.168. This value is

note, respectively, the beginning and end of the sedtfn very close to the maximal amplitude=(.16) measured in

Figs. 4 and & Fig. 4. The pa_ramete?w__().O_lG? has been determil_"ned from a
few consecutive magnifications of the fractal basin boundary
A=(1/ng)sinh S/, (16)  at the tangency point.
whereS=(b— Bb—bg)/bg is the relative size of gaps in the C. Mixed case: Example of attractor merging crisis
basin andj is the base of the logarithms in the plot Jagvs in a spin model

logyr (in this paper we usg=10). o

We argued that the above formula gives the estimate for ONe€ can see that the models of the self-similar attractor
the maximalamplitude of anomalous oscillations that in real @1d basin of escape in the vicinity of crisis tangency give a
dynamical systems are only roughly regular. In fact, thedood assessment of the amplitude of attractor-induced oscil-
attractor-induced oscillations are always present, but they ar@tions and the maximal amplitude of anomalous oscillations,
often dominated by the anomalous ones. Both kinds of oscilrespectively, although a very simplified picture of much
lations can be distinguished on plots Bfp— p.), provided =~ more complex real structures has been assumed. The self-
the amplitude of the anomalous ones is relatively small.  similarity included in the models is, however, the main fea-

The parameteg in Eqg. (15) corresponds to the inverse ture yielding the oscillations. To model the generic case
absolute value of the expanding eigenvalyeof the medi-  when both kinds of oscillation appear together, we can com-
bine both models observing(r) when 2, penetratess,,.

One then obtains some irregular pattern of oscillations super-
imposed on the power laid) (unless an exceptional set of
parameters is used; e.g=b and o= B). Nevertheless, the
maximal amplitude of anomalous sections is determined by
Eq. (16), and Eq.(13) gives a good approximation of the
amplitude of normal oscillationg—provided they are not
dominated by the anomalous ones.

To illustrate this and compare to a crisis in a real dynami-
cal system, let us consider an attractor-merging crisis in a
° - ry = ) = spin model describing the motion of a classical magnetic

log,, (B-B,) moment(spin S,|S|=S in the field of uniaxial anisotropy
(easy/hardz axis) and transversal periodic impulse magnetic

attractors after an attractor-merging crisis in the spin system fo];Ield B(t)=BZ,_,5(t—n7) along thex axis [15,18. The

Ac=1, 7,=2m, \,=01437002 .., andB,=1. The solid line ~SYSteM can be described by the Hamiltonkdr: —A(S;)*
has been obtained by combining the self-similar attragtprand ~ — B(t)S,, whereA is the anisotropy constant. The time evo-
basin %8, models with the parameter values=0.00234, y lution is determined by the Landau-Lifschitz equation with
=0.77,3=0.124,5=0.077, andb/a=3.83. an added damping term:

FIG. 5. Average time of residence on one of the precritical
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ds Y IV. SUMMARY AND CONCLUSIONS

dt 57 Ber SSX(S>< Ber), (7 We have investigated the deviations from the general

power law governing the dependence of average transient
times near crises. Two different kinds of oscillations have

whereBg= —dH/dS is the effective magnetic field and ~ been distinguished: normal, caused by the self-sintffarc-

>0 is a damping parameter. Equatiét7) can be trans- &) structure of the attractor; and anomalous, due to the self-

formed into a superposition of two two-dimensional mapssimilar intertwined structure of the precritical basins of at-

o . . o traction. The pure normal oscillations can be observed when
‘[alnSd1tEedgfszrcl$Ig?t:]r:eei:l\np:ﬁlggoiilsjgﬁnrt()eigéi?i?/;:?d ImpUISes’the basins of attraction are solid, without intertwined struc-

ture. We showed, using a simple model of an attractor, that

ForAc=1, Tc=_2_7r,_)\c=0.143 7002 ., a_nde_Bc=1, _ their amplitude is determined, similarly to the critical expo-
we observe a crisis-induced chaos-chaos intermittency; i.enent y, by the eigenvalues of the unstable periodic orbits
random jumps between two symmetric precritical chaotic atinvolved in the crisis.

tractors. Figure 5 shows the average residence times When basins are intertwined, both kinds of oscillations
one of the symmetric parts of the attractor as a function ofippear simultaneously, but the normal ones are visible only
B— B, measured in a computer simulation together with thewhen the anomalous ones are relatively small. In a typical
correspondingr(r) function (r=B—B.) obtained from the Mixed case, a rather complicated pattern resulting from the
combination of the model attractor, E¢5), and basin of interference of self-similaffractal) structures of the attractor

escape, Eq(15). The ratio of the “initial size” parameters and basin is observed. The roughly periodic anomalous os-
cillations can, however, be noticed and their maximal ampli-

. ) . ' Stude can be calculated from a formula obtained on the basis
of the attractor and basin tangencies at the crisis point, but {f¢ o simple model of a self-similar basin of attraction. Both

may also be treated as a fit parameter. The anomalous 0SCjjodels combined give a good approximation of the patterns
lations are clearly seen; their maximal observed amplitud¢yroduced by real dynamical systems and may be used to
again coincides with the value given by H46). One can predict the behavior o (p—p.); e.g., in regions inacces-
also recognize a faint vestige of the attractor-induced oscilsible to measurement.

lations, now veiled by the anomalous ones. It is notable that The obtained results are applicable to a large class of
the model curve reproduces quite well the pattern yielded bywo-dimensional systems undergoing different types of cri-
the real dynamical system, despite the above mentioned singes. The models can also be modified to get a still more
plifications. This proves the fact that the self-similar struc-detailed picture or to treat some special nongeneric cases.
ture of the attractor and the basin included in the models is
the basic feature underlying the emergence of oscillations.
The whole finer fractal structure gives just secondary contri- This work has been partially supported by the Polish
butions. It also indicates the possibility of using the com-Committee for Scientific Resear¢KBN), Grant No. 2P03B
bined model to predict the behavior of the functidifp 031 14. A part of the calculations has been performed on the
—p¢) for the p values very close tp., where the direct CRAY 6400 at the Warsaw University of Technology. We
measurement is impossible because of very long transiemtant to thank Wolfram Just for reviewing the manuscript
times or the limited precision of determininm-p.. and for his helpful remarks.
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