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Kink solitons of the double-quadratic model in the presence
of an external spatially inhomogeneous force

J. A. Hotyst
Institute of Physics, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland
(Received 18 August 1997

Dynamics of kink solitons of the double-quadratic model in the presence of an external, spatially inhomo-
geneous forcé(x) is considered. Stability analysis of such solutions is performed. It is shown that similarly
as for kinks of thep* equation there are differences between a stability condition for the kink treated as a point
particle and the kink treated as a spatially extended object. These differences occur when thHe(Xprce
possesses more than one zero and follow from interactions of kink Wiiegsparts of kinks that are far from
a kink centey with additional zeros of the forcé(x). [S1063-651X98)08704-3

PACS numbg(s): 03.40.Kf, 03.50.Kk

Understanding the behavior of kink solitons in the pres- Let us consider the one-dimensional model of a scalar
ence of external perturbations is a task that was a subject alassical field¢(z,7) defined by the following Hamiltonian:
several papers in the past, e[d.+7]. It is well known that in
many cases the kinks can be treatedstisctureless point H=Af (1[((25 )2+ ¢2( ) 2]+ w2 V($)— $F(2)] 1 dz
particles[1-4] and it is enough to consider the influence of T oz 0 '
external force on theenterof such kinks. On the other hand, (1)

it has also been shown that tlmternal structureof kink . . S
whereg, and ¢, mean corresponding partial derivatives, the

solitons plays an important role for the kink-kink scattering . .
[6], for the soliton stability in the presence of external, Spa_constantA determines the energy scale, the constgnis the

: . system characteristic velocity, the constantis the system
tially extended force$7], for the thermodynamical proper- S i . .
ties of a kink gag8], and for the behavior of kinks in DNA characteristic frequency, the first part on the right-hand side

haing 9] A ifestati f han int | soli of Eq. (1) is the field kinetic energy, the second one de-
chains{9]. common maniiestation ot such an Internal Soll- 5o iheg the elastic interactiortstrain energy, the potential
ton structure is a spectrum of soliton-phonph6—8 or

) V(¢)=3(|¢|—1)? is the “local” potential depending only
soliton-magnorj10] bound stateshat can be treated as small on the field¢, while the last term in Eq(1) represents the

Iogalizeq oscillations _around a kin_k. This spe_ctru_m deter'potential of the external, space dependent fd¥¢e).

mines directly the soliton stability, i.e., the soliton is stable Writing the standard equation of motion for the field
provided that all eigenvalues of the corresponding stabilitys(z ) and introducing the dimensionless tirhe w7 and
operator are positive. In the padéf it has been shown that gimensionless distanoe= (w/c,)z we get

for kinks of the ¢* model (with an external force included

this stability condition differs from the stability condition du=— (|| —1) sgn @) + P+ F(X). 2
based on the simplified energetic approach assuming the ] ) ]
kink as apoint particle The scope of the present paper is to IN the absence of the fordé&(x) one gets immediately a kink
study the stability of kinks in the perturbed one-dimensionalsolution of Eq.(2) in the form

double-quadrati¢DQ) model that is an interesting example B I

of nonlinear Klein-Gordon systems that have been used to b =(1-e"™) sgrix) (3)
d_escrlb_e properties of Iocah_zed excitations in quasl-oN€sy, ot connects two degenerated minigha& —1 and¢=1 of
dimensional solidge.g., domain walls in ferroelectrics and

) . . - the local potentiaM(¢#). Moving kinks can be simply ob-
ferromagngts or d|§|ocat|ons in crystqls8]). Similarly to tained by a Lorentz-like transformation of the soluti@.
other nonlinear Klein-Gordon systems the DQ model makes Now let us assume that the forégx) has the form
use of a scalar classical field witvo degenerated vacua
[1,8] and its statistical mechanics has been considered in F(x)z[A—1+A(BZ—1)e*B|X|] SgnBx) )
[8,12]. Special features of DQ models are as folldwsl2]: ’

(i) the local field energy consists of tw@rmonicwells cen-  \yhere A>0 andB>0 are parameters. The for¢d) is an
tered on positions corresponding to the field vadiia;the  antisymmetric function of the position and for A=1 it
kinks in this model are nontransparent to passing phononsepresents a localized impurity while fBr= 1 it corresponds

treated as a limiting case of a family of nonlinear Klein- three zeros. In fact for

Gordon models with Pszhel-Teller scattering potentigl1].
(A—1)(AB>-1)>0 (5)
*Electronic address: jholyst@if.pw.edu.pl there is only one zero d¥(x), i.e.,xo=0 while for
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harmonic time dependence, i.e(x,t) = expiwt)f(x) we get
after the proper linearization of EQ)
2 2
R —f(X) + 1_E5(X) f(X)= wf(x). 1y
L
This equation can be treated formally as an eigenvalue prob-
lem for a Schrdinger equation for a “quantum” particle in
a “ s-potential well” described by the “Hamiltonian”
¢ 1 2 S 12
H= §+ ICRRUE (12)
The stability condition of the solutiom(x) is equivalent
to
3
ot (.02>0 (13)

for all “eigenvalues” of the problem(11). However, the
Hamiltonian{ can be treated as a limiting case of a gener-
alized Pachel-Teller probleni11,13

d? a’\(A—1
HT=— i % , (14

FIG. 1. FunctionF(x) for various parameterd andB. X cost(ax)

where
(A—1)(AB*>-1)<0 (6)
€ 1
we have three zeros ¥(x), A=1+ ag ¥ €—0. (15)
1-A Using this representation we find that the eigenvalue prob-

Xo=0, x,=B7* ,oXe==Xy. (D) lem (11) possesses an infinite number of continuous eigen-

valuesw;>1 and exactly one bound state

nA(Bz— 1)

One can check by a simple algebra that for all values of the

parameteré\ andB there is a kink solution of Eq2) in the wi=1— L (16)
form b A2B2’
¢fk?(x):A(1—e_ BIXy sgn{BX). (8)  The stability condition(13) can now be written as
AB>1. 17

This solution represents a rescaled solutiBnhcentered on
the pointxy=0, i.e., on the “central” zero of the function
F(x). The fact that the zero of the external force can deter
mine the position of the kink soliton is well know®,7].

We see that this last condition is different from the stability
condition(10) where the kink was treated as a point particle.
. - . However, if we combine the conditiof10) with the condi-
Now let us consider the stability problem of the solutlontion (5) [being the condition fom single zero y=0 of the

%.;givr?tge t{;}i Ig?gbﬁ%pcﬂggﬁiiﬁ'iiwe can follow Ref.  ¢5ce F(x)] then we getA>1 and the conditior{17) is ful-
filled.

Putting the conditiong5), (6), (10), and(17) together we

dF) ) (9) can divide the space of parametérandB into six regions
dx | _, I-VI where depending on the shape of the fofegx) the
kink treated as a point particl®P or as an extended object
Putting Eq.(4) into Eq. (9) we get (EO) behaves as followssee Fig. 2
I: F(x) has a single zero, PP is stable, EO is stable.
AB?>1. (10 Il: F(x) has three zeros, PP is stable, EO is stable.

3 _ lll: F(x) has three zeros, PP is stable, EO is unstable.
On the other hand, we can perform a stability analysis of the |v: F(x) has a single zero, PP is unstable, EO is unstable.

kink ¢(5(x) treating this solution aan extended objecte., V: F(x) has three zeros, PP is unstable, EO is unstable.
using the approach developed [d1,7]. Writing ¢(x,t) VI: F(x) has three zeros, PP is unstable, EO is stable.
= ¢ﬁf)‘(x)+ 7(x,t) where| n(x,t)|<|¢ﬁ§(x)| and assuming We see that in region Ill the presence of additional zeros

according to the linear stability theoiyl,7,8,13 that the of the forceF(x) candestabilizethe kink treated as an ex-
perturbationy(x,t) is a spatially extended function with a tended object in comparison to the point particle behavior.
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FIG. 2. Stability regions for the kink treated as a point particle ¢ 27 I ! X, I
and as an extended object. ! !
2 T
On the other hand, in region VI these additional zeros can a2t Y B=0.5 1 (b)
also stabilize the spatially extended object while the point ' P :
particle is unstable. Such stabilization or destabilization ef- 0 — ’ 1
fects follow from influence of the forc&(x) on the kink o 1 2 3 4 5
wings, i.e., on the parts of the kink that are far away from the A

kink centerx=0. As the zeros of the forcE(x) determine
boundaries of segments on theaxis where the correspond-
ing parts of the kink are pushed by the fofeéx) along one
of two opposite directions, the positions of the zexgsand
x_ are important for the soliton stability. In fact, in regions
Il and VI (Fig. 3) the zerosx, andx_ are close to the kink
centerxg=0 and they influence essentially the soliton stabil- The author is thankful to Professor H. Zorski and to Dr. T.
ity, while in regions Il and V these additional zeros are farLipniacki for helpful discussions and to Professor H. Benner
away from the kink center and their influence can be nefor his hospitality in Darmstadt where the final version of
glected. A similar phenomenon has been observed for pethis paper has been completed. The work has been supported
turbed kinks in thep* model[7]. by Grant No. KBN PB 1124/P4/93/0Poland and as the

In conclusion, we have shown that the stability of kinks in project of SFB 185 Nichtlineare Dynamik by special funds
the double-quadratic model in the presence of an additionabf the Deutsche Forschungsgemeinschatt.

FIG. 3. Positions of zeros of the functidf(x).

spatially dependent force depends on the existence and posi-
tions of zeros of such a force. The result demonstrates the
spatial character of the kink soliton.
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