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Kink solitons of the double-quadratic model in the presence
of an external spatially inhomogeneous force

J. A. Hołyst*
Institute of Physics, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland

~Received 18 August 1997!

Dynamics of kink solitons of the double-quadratic model in the presence of an external, spatially inhomo-
geneous forceF(x) is considered. Stability analysis of such solutions is performed. It is shown that similarly
as for kinks of thef4 equation there are differences between a stability condition for the kink treated as a point
particle and the kink treated as a spatially extended object. These differences occur when the forceF(x)
possesses more than one zero and follow from interactions of kink wings~i.e., parts of kinks that are far from
a kink center! with additional zeros of the forceF(x). @S1063-651X~98!08704-2#

PACS number~s!: 03.40.Kf, 03.50.Kk
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Understanding the behavior of kink solitons in the pre
ence of external perturbations is a task that was a subje
several papers in the past, e.g.,@1–7#. It is well known that in
many cases the kinks can be treated asstructureless point
particles @1–4# and it is enough to consider the influence
external force on thecenterof such kinks. On the other hand
it has also been shown that theinternal structureof kink
solitons plays an important role for the kink-kink scatteri
@6#, for the soliton stability in the presence of external, sp
tially extended forces@7#, for the thermodynamical proper
ties of a kink gas@8#, and for the behavior of kinks in DNA
chains@9#. A common manifestation of such an internal so
ton structure is a spectrum of soliton-phonon@1,6–8# or
soliton-magnon@10# bound statesthat can be treated as sma
localized oscillations around a kink. This spectrum det
mines directly the soliton stability, i.e., the soliton is stab
provided that all eigenvalues of the corresponding stab
operator are positive. In the paper@7# it has been shown tha
for kinks of thef4 model ~with an external force included!
this stability condition differs from the stability conditio
based on the simplified energetic approach assuming
kink as apoint particle. The scope of the present paper is
study the stability of kinks in the perturbed one-dimensio
double-quadratic~DQ! model that is an interesting examp
of nonlinear Klein-Gordon systems that have been used
describe properties of localized excitations in quasi-o
dimensional solids~e.g., domain walls in ferroelectrics an
ferromagnets or dislocations in crystals@1,8#!. Similarly to
other nonlinear Klein-Gordon systems the DQ model ma
use of a scalar classical field withtwo degenerated vacu
@1,8# and its statistical mechanics has been considere
@8,12#. Special features of DQ models are as follows@8,12#:
~i! the local field energy consists of twoharmonicwells cen-
tered on positions corresponding to the field vacua;~ii ! the
kinks in this model are nontransparent to passing phon
~iii ! the effective scattering potential for kink-phonon inte
actions possesses ad-like shape@8#; ~iv! the model can be
treated as a limiting case of a family of nonlinear Klei
Gordon models with Po¨schel-Teller scattering potential@11#.

*Electronic address: jholyst@if.pw.edu.pl
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Let us consider the one-dimensional model of a sca
classical fieldf(z,t) defined by the following Hamiltonian

H5AE H 1

2
@~ft!

21c0
2~fz!

2#1v0
2@V~f!2fF~z!#J dz,

~1!

wherefz andft mean corresponding partial derivatives, t
constantA determines the energy scale, the constantc0 is the
system characteristic velocity, the constantv0 is the system
characteristic frequency, the first part on the right-hand s
of Eq. ~1! is the field kinetic energy, the second one d
scribes the elastic interactions~strain energy!, the potential
V(f)5 1

2 (ufu21)2 is the ‘‘local’’ potential depending only
on the fieldf, while the last term in Eq.~1! represents the
potential of the external, space dependent forceF(z).

Writing the standard equation of motion for the fie
f(z,t) and introducing the dimensionless timet5vt and
dimensionless distancex5(v/c0)z we get

f tt52~ ufu21! sgn~f!1fxx1F~x!. ~2!

In the absence of the forceF(x) one gets immediately a kink
solution of Eq.~2! in the form

f~k!~x,t !5~12e2uxu! sgn~x! ~3!

that connects two degenerated minimaf521 andf51 of
the local potentialV(f). Moving kinks can be simply ob-
tained by a Lorentz-like transformation of the solution~3!.

Now let us assume that the forceF(x) has the form

F~x!5@A211A~B221!e2Buxu# sgn~Bx!, ~4!

whereA.0 andB.0 are parameters. The force~4! is an
antisymmetric function of the positionx and for A51 it
represents a localized impurity while forB51 it corresponds
to a steplike phase boundary~Fig. 1!. Assuming that
sgn(0)50 we see that the forceF(x) can possess one o
three zeros. In fact for

~A21!~AB221!.0 ~5!

there is only one zero ofF(x), i.e., x050 while for
4786 © 1998 The American Physical Society
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~A21!~AB221!,0 ~6!

we have three zeros ofF(x),

x050, x15B21U ln 12A

A~B221!
U , x252x1 . ~7!

One can check by a simple algebra that for all values of
parametersA andB there is a kink solution of Eq.~2! in the
form

f~k!
AB~x!5A~12e2Buxu! sgn~Bx!. ~8!

This solution represents a rescaled solution~3! centered on
the pointx050, i.e., on the ‘‘central’’ zero of the function
F(x). The fact that the zero of the external force can de
mine the position of the kink soliton is well known@6,7#.

Now let us consider the stability problem of the soluti
~8!. Treating the kink asa point particlewe can follow Ref.
@6# and write the stability condition as

FdF~x!

dx G
x50

.0. ~9!

Putting Eq.~4! into Eq. ~9! we get

AB2.1. ~10!

On the other hand, we can perform a stability analysis of
kink f (k)

AB(x) treating this solution asan extended object, i.e.,
using the approach developed in@1,7#. Writing f(x,t)
5f (k)

AB(x)1h(x,t) whereuh(x,t)u!uf (k)
AB(x)u and assuming

according to the linear stability theory@1,7,8,12# that the
perturbationh(x,t) is a spatially extended function with

FIG. 1. FunctionF(x) for various parametersA andB.
e

r-

e

harmonic time dependence, i.e.,h(x,t)5exp(ivt)f(x) we get
after the proper linearization of Eq.~2!

2 f xx~x!1F12
2

AB
d~x!G f ~x!5v2f ~x!. ~11!

This equation can be treated formally as an eigenvalue p
lem for a Schro¨dinger equation for a ‘‘quantum’’ particle in
a ‘‘d-potential well’’ described by the ‘‘Hamiltonian’’

H52
d2

dx2
1F12

2

AB
d~x!G . ~12!

The stability condition of the solutionf (k)
AB(x) is equivalent

to

v2.0 ~13!

for all ‘‘eigenvalues’’ of the problem~11!. However, the
HamiltonianH can be treated as a limiting case of a gen
alized Po¨schel-Teller problem@11,13#

HPT52
d2

dx2
1F12

a2l~l21!

cosh2~ax!
G , ~14!

where

l511
e

AB
, a5

1

e
, e→0. ~15!

Using this representation we find that the eigenvalue pr
lem ~11! possesses an infinite number of continuous eig
valuesvk

2.1 and exactly one bound state

vb
2512

1

A2B2
. ~16!

The stability condition~13! can now be written as

AB.1. ~17!

We see that this last condition is different from the stabil
condition~10! where the kink was treated as a point partic
However, if we combine the condition~10! with the condi-
tion ~5! @being the condition fora single zero x050 of the
force F(x)# then we getA.1 and the condition~17! is ful-
filled.

Putting the conditions~5!, ~6!, ~10!, and~17! together we
can divide the space of parametersA andB into six regions
I–VI where depending on the shape of the forceF(x) the
kink treated as a point particle~PP! or as an extended objec
~EO! behaves as follows~see Fig. 2!.

I: F(x) has a single zero, PP is stable, EO is stable.
II: F(x) has three zeros, PP is stable, EO is stable.
III: F(x) has three zeros, PP is stable, EO is unstable
IV: F(x) has a single zero, PP is unstable, EO is unsta
V: F(x) has three zeros, PP is unstable, EO is unstab
VI: F(x) has three zeros, PP is unstable, EO is stable
We see that in region III the presence of additional ze

of the forceF(x) can destabilizethe kink treated as an ex
tended object in comparison to the point particle behav
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On the other hand, in region VI these additional zeros
also stabilize the spatially extended object while the poi
particle is unstable. Such stabilization or destabilization
fects follow from influence of the forceF(x) on the kink
wings, i.e., on the parts of the kink that are far away from
kink centerx50. As the zeros of the forceF(x) determine
boundaries of segments on theX axis where the correspond
ing parts of the kink are pushed by the forceF(x) along one
of two opposite directions, the positions of the zerosx1 and
x2 are important for the soliton stability. In fact, in region
III and VI ~Fig. 3! the zerosx1 andx2 are close to the kink
centerx050 and they influence essentially the soliton stab
ity, while in regions II and V these additional zeros are
away from the kink center and their influence can be
glected. A similar phenomenon has been observed for
turbed kinks in thef4 model @7#.

In conclusion, we have shown that the stability of kinks
the double-quadratic model in the presence of an additio

FIG. 2. Stability regions for the kink treated as a point parti
and as an extended object.
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spatially dependent force depends on the existence and
tions of zeros of such a force. The result demonstrates
spatial character of the kink soliton.
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for his hospitality in Darmstadt where the final version
this paper has been completed. The work has been supp
by Grant No. KBN PB 1124/P4/93/04~Poland! and as the
project of SFB 185 Nichtlineare Dynamik by special fun
of the Deutsche Forschungsgemeinschaft.

FIG. 3. Positions of zeros of the functionF(x).
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