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Control of crisis-induced intermittency in the dynamics of a kicked, damped spin
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A method of controlling the intermittent behavior induced by a crisis is applied to a model of a periodically
kicked, damped spin. Using small, occasional changes of a parameter, one can make the system remain on a
former attractor, enlarged or destroyed by a crisis. The amplitude of the changes grows linearly with the
distance from the crisis point, and the frequency of interventions scales as the inverse of the characteristic time
of the intermittency[S1063-651X97)05704-§

PACS numbes): 05.45+b

I. INTRODUCTION Another approach?9], investigated in this paper, makes
the use of the specific geometry of the phase space arising
Control of chaos is one of the extensively explored topicsafter the crisis. Generically, the chaotic attractor lies in the
in recent year$1—3]. The generic feature of nonlinetaha-  closure of the unstable manifold, of a periodic orbit and
otic) dynamical systems, namely, their sensitivity to smallthe boundary of its basin of attraction is in the closure of the
changes of the system parameters or variables, enables atiable manifoldwg of the same or another orbit, which we
taining significant changes in the dynamics by applying onlycall the mediating orbit, as it is a kind of a gateway for the
a small control signal. One of the purposes of the controkystem to escape from the attractor. When the crisis occurs
may be the stabilization of the unstable periodic orbits emboth manifolds become tangent one to another in infinitely
bedded in the chaotic attractdr]. Another case is connected many points(homoclinic or heteroclinic points, depending
with the event called houndary crisig4—6]: the collision of  on whethemwg andw,, belong to the same or different orbits,
the attractor with its basin of attraction, when varying a systespectively. As the parametep is further increased, the
tem parametep and passing some critical valyg . Such tangency points transform into a series of regions along
collision implies a sudden change in the system dynanfics: which the system escapes from the attractor. The main idea
destruction of the attractor dii) merging with another at- of the control is to break up the escape, applying a perturba-
tractor (or attractors Connected with the crises is a charac-tion in the system.
teristic transient or intermittent behavior appearing at the pa- In the present paper we develop the idea suggestgdl,in
rameter valueg slightly greater than the crisis valyg,  giving an explicit formula for the control signal and calcu-
(after the crisig In case(i) the system spends some time on lating its mean value in the case of a two-dimensid2al)
the remanent of the destroyed attractor before it moves tmap. The approach is applied to the model of a kicked clas-
some other part of the phase space. Wiigroccurs, one can sical spin.

observe intermittent jumps among different parts of the at- In Sec. Il, we introduce the model of a periodically
tractor. The time between subsequent jurfipsor the tran-  kicked, damped spin. Section Il describes the idea of control
sient time(i) is exponentially distributed intermittency appearing in the model. The numerical results

are given in Sec. IV. Finally, Sec. V provides a discussion of

1 t various aspects of the method, as well as a comparison to
Pr(t)=—exg — ;), (1)  other methods of controlling transient chaotic dynamics.
and its mean value scales as II. DYNAMICS OF THE PERIODICALLY KICKED,
DAMPED SPIN
Tx(P=Pc) 7 2 After the paper$10,11], we consider a classical magnetic

moment(spin) S, |S=S in the field of uniaxial anisotropy
for a large class of low dimensional dynamical systems, with(z is the easy or hard ajisvith imposed transversal mag-
the exponenty being determined by the eigenvalues of thenetic field B(t) along thex axis. The system can be de-
periodic orbit involved in the crisif6]. scribed by the Hamiltonian
One might be interested in making the system remain on
the chaotic attractor or on a definite part of it. One way to do

this [7,8] is to find an arbitrarily long chaotic orbit lying H=-A(S)*~B(VS,, @)
within the desired part of the attract@r its remanent and
then control it using the classical method devisedlih whereA is the anisotropy constant; we have the easkis
when A>0 and the easy-y plane (hard z axis) when
A<O.
*Electronic address: kacper@if.pw.edu.pl The motion of the spin is determined by the Landau-
TElectronic address: jholyst@if.pw.edu.pl Lifschitz equation with damping term
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FIG. 1. Bifurcation diagrams for the spin maf8) for ¢
A=1 and (@ 7=2m, B=1; (b) A\=0.1054942,B=1; (c)
r=2m,A=0.105 494 2. FIG. 2. (@ Chaotic attractor of the map(8) for
A.=1, 7.=2m, \.=0.1054942, and B=0.999, just before
ds \ crisis [another, separate attractor is situated symmetrically with re-
EZSX Beﬁ—§S><(S>< Bet) s (4) spect to the point(0,0)]. (b) Attractor arisen after merging

of the formerly separate attractors after crisigfor
) ) o A.=1, \;=0.105494 2, and=1.001).
where Bgs= —dH/dS is the effective magnetic field and

A>0 is a damping parameter. o The second maglg written in the variables $,,®),
Taking the driving field in the form of periodié pulses  where® is the angle between theaxis and the projection
of the amplitudeB and the periodr of the spin on the/-z plane has the form
i o d—-B
B()=B2, &(t-n7), (5 Ts s||s-2s(s-s)p%] )

and using the fact thas| is constant, the equation of motion WhereD =exp(~\B) andU =[S+ S+D?*(S-S)]*.

(4) can be transformed into a superposition of two 2D maps: 1 he complete dynamics is yielded as a composition of the
T, describing the time evolution between kicks ahglde- ~ tWO maps

scribing the effect of the kick. The map, can be written in
the variables §,,¢), whereg is the angle between the axis
x and the projection of the spin on thxey plane

S'=Tg[TalS]] (8

with appropriate transformation of coordinates. The classical
undamped case of the m&®) as well as its corresponding
(6) Equant:ljlm model has been investigated in several papers, e.g.,
12,13.
For different values of the parameters the system exhibits
where  W=[c?+(S,/S)?(1-c?)] 2 c=exp(-2\ASr)  various types of dynamics including the periodic and chaotic
andA¢=(1N\)In(1+9S)/[1+S(WS)]|—-2ASr. ones(Fig. 1). In this paper, we study the crisis that occurs for

pt+Ap
WS

1
S,
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FIG. 5. (a) A fragment of the attractor and the stable manifold of
the mediating orbitdashed linglimiting the escape regioR after
crisis[B=1.005, other parameter values as in Fi(e)R (b) The
image of the region shown ife) after the next iteration with the
control applied. The points that would otherwise form the subse-

b) quent escape regiotbelow wg) are shifted to the other side of
Ws.

phenomenon is called arisis induced intermittency6].
Here we deal with a homoclinic crisis with the mediating

e saddle period 3 orbit, marked in Fig. 3. The eigenvalues of
1.56 0 1.66 the orbit arex ,~4.8988 and\ ;~0.0108 and hence, the ex-
ponent appearing in Eq) is y~0.77[6]. Moreover, as one

FIG. 3. (a) Chaotic attractofcompare Fig. 2)] and its basin of ~Can See in Fig. 3 the basins of attraction of both attractors

attraction (white spoty just before crisigparameter values as in JUSt before the crisis have fractal boundaries. Our aim is to
Fig. 2a)]. Black spots denote the basin of attraction of the other,CONtrol the intermittent dynamics, i.e., to force the system to
symmetric attractor. Mediating orbitperiod 3 is marked by remain on one of the former attractors for an arbitrarily long
M;,M,, M. (b) A blown up tangency region frorte); the fractal ~ time using small, occasional perturbation of the accessible
structure of the basin boundary is visible. parameter.

=27, Ae=0.105494 2, A.=1, andB.=1 in which two IIl. ALGORITHM OF CONTROL
symmetric chaotic attractors merffe0,11] (Fig. 2). The at-
tractors correspond to two Ising statéspin “up” and
“down” ) existing in the absence of the external field. We
take the amplitude of the driving fiel®, as an accessible X'=F(X,p) 9
system parameter. Fd>B. random jumps between the
two, previously separate attractors can be observed; the tintepending on an accessible paramgteFor simplicity we
between jumps obey@oughly) the scaling low(2). Such a take into account a homoclinic crisis, but the considerations
below can be easily extended to the heteroclinic case. Imag-
ine that we have a chaotic attractor in the closure of the

unstable manifoldv,, of a saddle periodic orbit. The orbit
—\F‘ lies at the border of the basin of attraction of the attractor,
and the border, in turn, is in the closure of the stable mani-
y y fold wg of the orbit. When the parametprreaches the crisis
W, Yy
¥s W,

Let us put the control algorithm more generally, for a
system described by a 2D map

value p. the unstable manifold touches the stable one, i.e.,
infinitely many homoclinic points appear. As is further
increased, cross-hatched regions are formed, which cover al-
most the whole area of the former attractor and its basin of
attraction. A sequence of these regions, as they are iterated

FIG. 4. Escape region and its image after one iteration, illustraOne onto another, determine the way of escape of the system
tion of the control procedurésee texk from the attractor.
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FIG. 7. Mean value of the time between control pulses as the
function of the distanc® — B from the crisis. Solid line shows the
b) dependence obtained from E®).

whereA’=F(A,p). Hence, using Eq.10) we have

° O e oo oo X ADG [3(A)(X—A)]-G
0.010 — P< K-G - K-G ’
with the sign “>" if K-G>0 and ‘<" if K-G<0. The
first case appears if the paramepedecreases reaching the
crisis valuep. (6p>0) and the other one if the parameter
increases §p<0). Jg is the Jacobian matrix of the m&@).
Obviously, the algorithm fails iK-G=0.

The parametep will be perturbed according to E@12)
every time the system tries to escape from our controlled part

(12

<)

0 2000 imoaep 0 8000 of the attractor, thus the time between two subsequent
op# 0 has the distributioil) with 7 determined by Eq(2).
FIG. 6. (a), (b) show the time evolution of maf8), (c) shows We can also calculate the mean value of the minimal

the respective changes of the param@&@eParameter values as in Perturbation required to obtain control. To do thgs we
Fig. 2@). The control was turned on &t 2000 and turned off at assume a simplified case whew,={(x,y):y=ax<},

t=5000. The dashed line ift) denotes the average value 88  Ws={(X,y):y=Y} and take A=(0)Y), K=[lk], and
calculated ovesB=0. G=[0,1] in (12). Then, putting equality in Eq12) one gets

: (F(X)—A)-G
In order to preserve the motion on the former attractor, op=— — K& (13
destructed or enlarged by the crisis we choose, out of the
series mentioned above, a pair of subsequent escape regiogsd the mean value
close to the mediating orbit, so that in the second region
w, can be approximated by a straight line amg by a pa- (5p)= X_ @ (14)
rabola(Fig. 4). At every time step we check if the evolving k k-

system enters the first of the regions. If so, we apply a smal_l_h b lculated using diff
perturbation of a parameter to shift the system out of thel '€ @veragely) can be calculated using different assump-
ions concerning the invariant measure of the attractor within

escape region in the next iteration. In fact, we only need t(% i . -
p 9 y he escape region. We consider two cas@s:when the

check on which side ot the phase point is, because the points of the attractor are uniformly distributed alomg (on

attractor is naturally I|m|teq byw, . We cr_]oo_se a pomt. the border of the escape regjoror (ii) within the whole
A e wg and assume that the first escape region is small. Us'ngscape region Using the linear approximation

5?\:3 rI}iErj“elz’;':l(rszlgpFr%)fiI;jation of the dynami¢®) in this region Y~m(p—p,) We get, after a proper integration,

2m
X'=F(X,p+ 8p)~F(X,p)+K(A,p)5p (9p)~3 1 (P=pc) “borderaverage,” (15
, JF(X,p) 2m
=X"+K(A,p)dp, K(X*p):T' (10 (op)~z 1 (P—p) “areaaverage.” (16
Denoting a vector perpendicular @, and pointing towards 1 1€ result(15) has been obtained using the approximation
the attractor byG the condition to shift the phase point to the

WYTa VY7a
other side ofw is f ax? \/1+4x2dx/ j V1+4x2dx=YI3
0 0

()?’—A’)-G>O, (1)  valid for smallY/a.
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0003 ¢ V). Figure 8 shows the mean amplitude of the control signal

"border average" . (6B) compared to the calculations based on Hd$) and
00025 b (15). The actual values lie between both extreme lines be-
A cause, as one can see in Fig. 3, the attractor is distributed
% 0002 | . neither over the whole escape region nor along its border, but
\ . -7 forms a(fractal) series of loops.
I ooms | ’/,/
0001 ) /”')area average’ V. SUMMARY AND DISCUSSION
. F | | g
- /,/” The method presented in this paper enables us to keep a
0.0005 | el chaotic system on a desired part of a chaotic attractor using
//" occasional control pulses proportional to the distaficga-

rameter spagdrom the crisisp— p.; the mean frequency of
the pulses is X, where 7 scales as [{—p.)~” for small
p—p.. The parameter changes are typically greater than
those in the method described[in 8], but we do not have to
know the wholgarbitrary long chaotic orbit to be stabilized
together with the linear properties of the system around each
point of the orbit.

IV. NUMERICAL RESULTS The control procedure can be improved to achieve smaller

_ _ parameter changes needed to perform it. First, one can try to

~ The method described above was applied to control théyinimize the coefficienin/k in Egs. (16) and (15). It de-
intermittent behavior emerged in the spin ma®) for  yends on which pair of escape regions we choose to control.
A;=0.105494 2,7=2m, A;=1, and B>B.=1. As our  Generically, one should iterate the controlled escape region
escape region we have chosen the one arisen from the tagackwards as far as possible, because theshrinks expo-
gency denoted by in Fig. 3, its image is denoted bR’".  npentially: mec|\ (", where\, is the stable eigenvalue of the
One can see both regions blown up in Fig. 5 after the crisismegiating orbit. But, on the other hand, the region grows
Figure 6 shows an example of the controlled dynamics fo'éxponentially(as INy" A, is the stable eigenvalue of the
B=1.005. Up tot=2000, when the control was turned on, mediating orbit in the other direction, so that it undergoes a
we can see intermittent jumps between both symmetric parteries of stretchings and foldings and becomes fractal as
of the attractor. Then, after jumping to the “upper” attractor, n—oo, and it is more and more difficult to control such an
the system remained there until we switched the control off o4 Moreover, our approximation of, by a straight line
at t=5000 and the intermittent dynamics followed agai”-andwu by a paraboldas in Fig. 4 is valid only for a few
The relevant parameter changéB, are shown in Fig. €).  preimages of the escape region, close to the mediating orbit.
The control signalsB+ 0 was applied, on average, every 39 Thys, if one chooses an earlier preimage, the method of con-
time steps and its mean valge- 6B)=0.0023. If we con- | should be modified and E¢12) will not be valid.
sider the parameter changes at every time step, including Another way is to make use of the fractal structure of the
6B=0 we would obtain another mean value€—6B>  pasins of attractioriFig. 3. In fact, not every point of our
=0.000 058<(B—B,). The control was performed for dif- escape region maps outside the desired part of the attractor in
ferent values 0B>B, and the mean time between subse- 5 few time steps. The points being directly attracted to the
quent control pulses and their amplitu@&B) was measured other part form a fractal set within the region. Thus, if we
as a function oB—B,. As we expectedr obeys the scaling knew the location of the set, we could just move the system
low (2) (Fig. 7), but for a givenB—B, it is smaller than the  away from it with a much smaller parameter change, instead
mean time between jumps observed by us without controlef a shift out of the entire control region. Moreover, the
This means that some of our control interventions are unnegnean frequency of the control pulses would also decrease,
essary. If we look at Fig. 6 we note that at the uncontrolledas, because of the structure of our escape region, some of the

dynamics, apart from the jumps between the “upper” andinterventions are unnecessary and can be omitted.
“lower” phases we have random spikes within the phases

that do not lead to the jumps. There are no such spikes in the
controlled dynamics, so our control prevents both the inter-
phase jumps and the spikes within the phase. This is the This work has been supported by the Polish Committee
result of a fractal structure of the basin of attractieae Sec. for Scientific ResearckKBN), Grant No. 803/P03/95/09.
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FIG. 8. Mean parameter changéB) (calculated oveB=0)
vs the distance from the crisis obtained from Ed%) (solid line)
and(16) (dashed ling and computer simulationgoints.
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