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Control of crisis-induced intermittency in the dynamics of a kicked, damped spin

Krzysztof Kacperski* and Janusz A. Hołyst†

Institute of Physics, Warsaw Technical University, Koszykowa 75, PL-00–662 Warsaw, Poland
~Received 21 November 1996!

A method of controlling the intermittent behavior induced by a crisis is applied to a model of a periodically
kicked, damped spin. Using small, occasional changes of a parameter, one can make the system remain on a
former attractor, enlarged or destroyed by a crisis. The amplitude of the changes grows linearly with the
distance from the crisis point, and the frequency of interventions scales as the inverse of the characteristic time
of the intermittency.@S1063-651X~97!05704-8#
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I. INTRODUCTION

Control of chaos is one of the extensively explored top
in recent years@1–3#. The generic feature of nonlinear~cha-
otic! dynamical systems, namely, their sensitivity to sm
changes of the system parameters or variables, enable
taining significant changes in the dynamics by applying o
a small control signal. One of the purposes of the con
may be the stabilization of the unstable periodic orbits e
bedded in the chaotic attractor@1#. Another case is connecte
with the event called aboundary crisis@4–6#: the collision of
the attractor with its basin of attraction, when varying a s
tem parameterp and passing some critical valuepc . Such
collision implies a sudden change in the system dynamics~i!
destruction of the attractor or~ii ! merging with another at-
tractor ~or attractors!. Connected with the crises is a chara
teristic transient or intermittent behavior appearing at the
rameter valuesp slightly greater than the crisis valuepc
~after the crisis!. In case~i! the system spends some time
the remanent of the destroyed attractor before it move
some other part of the phase space. When~ii ! occurs, one can
observe intermittent jumps among different parts of the
tractor. The time between subsequent jumps~ii ! or the tran-
sient time~i! is exponentially distributed

Pr~ t !5
1

t
expS 2

t

t D , ~1!

and its mean valuet scales as

t }~p2pc!
2g ~2!

for a large class of low dimensional dynamical systems, w
the exponentg being determined by the eigenvalues of t
periodic orbit involved in the crisis@6#.

One might be interested in making the system remain
the chaotic attractor or on a definite part of it. One way to
this @7,8# is to find an arbitrarily long chaotic orbit lying
within the desired part of the attractor~or its remanent!, and
then control it using the classical method devised in@1#.
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Another approach@9#, investigated in this paper, make
the use of the specific geometry of the phase space ari
after the crisis. Generically, the chaotic attractor lies in
closure of the unstable manifoldwu of a periodic orbit and
the boundary of its basin of attraction is in the closure of
stable manifoldws of the same or another orbit, which w
call the mediating orbit, as it is a kind of a gateway for t
system to escape from the attractor. When the crisis oc
both manifolds become tangent one to another in infinit
many points~homoclinic or heteroclinic points, dependin
on whetherws andwu belong to the same or different orbits
respectively!. As the parameterp is further increased, the
tangency points transform into a series of regions alo
which the system escapes from the attractor. The main
of the control is to break up the escape, applying a pertur
tion in the system.

In the present paper we develop the idea suggested in@9#,
giving an explicit formula for the control signal and calc
lating its mean value in the case of a two-dimensional~2D!
map. The approach is applied to the model of a kicked c
sical spin.

In Sec. II, we introduce the model of a periodical
kicked, damped spin. Section III describes the idea of con
intermittency appearing in the model. The numerical resu
are given in Sec. IV. Finally, Sec. V provides a discussion
various aspects of the method, as well as a compariso
other methods of controlling transient chaotic dynamics.

II. DYNAMICS OF THE PERIODICALLY KICKED,
DAMPED SPIN

After the papers@10,11#, we consider a classical magnet
moment~spin! S, uSu5S in the field of uniaxial anisotropy
(z is the easy or hard axis! with imposed transversal mag
netic field B(t) along thex axis. The system can be de
scribed by the Hamiltonian

H52A~Sz!
22B~ t !Sx , ~3!

whereA is the anisotropy constant; we have the easyz axis
when A.0 and the easyx-y plane ~hard z axis! when
A,0.

The motion of the spin is determined by the Landa
Lifschitz equation with damping term
5044 © 1997 The American Physical Society
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dS

dt
5S3Beff2

l

S
S3~S3Beff!, ~4!

where Beff52dH/dS is the effective magnetic field an
l.0 is a damping parameter.

Taking the driving field in the form of periodicd pulses
of the amplitudeB and the periodt

B~ t !5B(
n51

`

d~ t2nt!, ~5!

and using the fact thatuSu is constant, the equation of motio
~4! can be transformed into a superposition of two 2D ma
TA describing the time evolution between kicks andTB de-
scribing the effect of the kick. The mapTA can be written in
the variables (Sz ,w), wherew is the angle between the ax
x and the projection of the spin on thex-y plane

TAFw

Sz
G5Fw1Dw

WSz
G , ~6!

where W5@c21(Sz /S)
2(12c2)#21/2, c5exp(22lASt)

andDw5(1/l)ln(11S/Sz)/@11S/(WSz)#22ASt.

FIG. 1. Bifurcation diagrams for the spin map~8! for
A51 and ~a! t52p, B51; ~b! l50.105 494 2,B51; ~c!
t52p,l50.105 494 2.
:

The second mapTB written in the variables (Sx ,F),
whereF is the angle between they axis and the projection
of the spin on they-z plane has the form

TBFF

Sx
G5FF2B

S22S~S2Sx!D
2UG , ~7!

whereD5exp(2lB) andU5@S1Sx1D2(S2Sx)#
21.

The complete dynamics is yielded as a composition of
two maps

S85TB†TA@S#‡ ~8!

with appropriate transformation of coordinates. The class
undamped case of the map~8! as well as its correspondin
quantum model has been investigated in several papers,
@12,13#.

For different values of the parameters the system exhi
various types of dynamics including the periodic and chao
ones~Fig. 1!. In this paper, we study the crisis that occurs f

FIG. 2. ~a! Chaotic attractor of the map~8! for
Ac51, tc52p, lc50.105 494 2, and B50.999, just before
crisis @another, separate attractor is situated symmetrically with
spect to the point~0,0!#. ~b! Attractor arisen after merging
of the formerly separate attractors after crisis~for
Ac51, lc50.105 494 2, andB51.001).
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tc52p, lc50.105 494 2,Ac51, andBc51 in which two
symmetric chaotic attractors merge@10,11# ~Fig. 2!. The at-
tractors correspond to two Ising states~spin ‘‘up’’ and
‘‘down’’ ! existing in the absence of the external field. W
take the amplitude of the driving field,B, as an accessible
system parameter. ForB.Bc random jumps between th
two, previously separate attractors can be observed; the
between jumps obeys~roughly! the scaling low~2!. Such a

FIG. 3. ~a! Chaotic attractor@compare Fig. 2~a!# and its basin of
attraction ~white spots! just before crisis@parameter values as i
Fig. 2~a!#. Black spots denote the basin of attraction of the oth
symmetric attractor. Mediating orbit~period 3! is marked by
M1 ,M2 ,M3. ~b! A blown up tangency region from~a!; the fractal
structure of the basin boundary is visible.

FIG. 4. Escape region and its image after one iteration, illus
tion of the control procedure~see text!.
e

phenomenon is called acrisis induced intermittency@6#.
Here we deal with a homoclinic crisis with the mediatin
saddle period 3 orbit, marked in Fig. 3. The eigenvalues
the orbit arelu'4.8988 andls'0.0108 and hence, the ex
ponent appearing in Eq.~2! is g'0.77@6#. Moreover, as one
can see in Fig. 3 the basins of attraction of both attract
just before the crisis have fractal boundaries. Our aim is
control the intermittent dynamics, i.e., to force the system
remain on one of the former attractors for an arbitrarily lo
time using small, occasional perturbation of the access
parameter.

III. ALGORITHM OF CONTROL

Let us put the control algorithm more generally, for
system described by a 2D map

X85F~X,p! ~9!

depending on an accessible parameterp. For simplicity we
take into account a homoclinic crisis, but the consideratio
below can be easily extended to the heteroclinic case. Im
ine that we have a chaotic attractor in the closure of
unstable manifoldwu of a saddle periodic orbit. The orbi
lies at the border of the basin of attraction of the attract
and the border, in turn, is in the closure of the stable ma
fold ws of the orbit. When the parameterp reaches the crisis
value pc the unstable manifold touches the stable one, i
infinitely many homoclinic points appear. Asp is further
increased, cross-hatched regions are formed, which cove
most the whole area of the former attractor and its basin
attraction. A sequence of these regions, as they are iter
one onto another, determine the way of escape of the sys
from the attractor.

r,

-

FIG. 5. ~a! A fragment of the attractor and the stable manifold
the mediating orbit~dashed line! limiting the escape regionR after
crisis @B51.005, other parameter values as in Fig. 2~a!#. ~b! The
image of the region shown in~a! after the next iteration with the
control applied. The points that would otherwise form the sub
quent escape region~below ws) are shifted to the other side o
ws .
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55 5047CONTROL OF CRISIS-INDUCED INTERMITTENCY IN . . .
In order to preserve the motion on the former attract
destructed or enlarged by the crisis we choose, out of
series mentioned above, a pair of subsequent escape reg
close to the mediating orbit, so that in the second reg
ws can be approximated by a straight line andwu by a pa-
rabola~Fig. 4!. At every time step we check if the evolvin
system enters the first of the regions. If so, we apply a sm
perturbation of a parameter to shift the system out of
escape region in the next iteration. In fact, we only need
check on which side ofws the phase point is, because th
attractor is naturally limited bywu . We choose a poin
APws and assume that the first escape region is small. U
the linear approximation of the dynamics~9! in this region
we have~see Fig. 4!

X̃85F~X,p1dp!'F~X,p!1K ~A,p!dp

5X81K ~A,p!dp, K ~X,p!5
]F~X,p!

]p
. ~10!

Denoting a vector perpendicular tows and pointing towards
the attractor byG the condition to shift the phase point to th
other side ofws is

~X̃82A8!•G.0, ~11!

FIG. 6. ~a!, ~b! show the time evolution of map~8!, ~c! shows
the respective changes of the parameterB. Parameter values as i
Fig. 2~a!. The control was turned on att52000 and turned off at
t55000. The dashed line in~c! denotes the average value ofdB
calculated overdBÞ0.
r,
e
ns,
n

ll
e
o

g

whereA85F(A,p). Hence, using Eq.~10! we have

dp,
.2

~X82A8!•G

K•G
'2

@ ĴF~A!~X2A!#•G

K•G
, ~12!

with the sign ‘‘. ’ ’ if K•G.0 and ‘‘, ’ ’ if K•G,0. The
first case appears if the parameterp decreases reaching th
crisis valuepc (dp.0) and the other one if the paramete
increases (dp,0). ĴF is the Jacobian matrix of the map~9!.
Obviously, the algorithm fails ifK•G50.

The parameterp will be perturbed according to Eq.~12!
every time the system tries to escape from our controlled p
of the attractor, thus the time between two subsequ
dpÞ0 has the distribution~1! with t determined by Eq.~2!.

We can also calculate the mean value of the minim
perturbation required to obtain control. To do this w
assume a simplified case whenwu5$(x,y):y5ax2%,
ws5$(x,y):y5Y% and take A5(0,Y), K5@ l ,k#, and
G5@0,1# in ~12!. Then, putting equality in Eq.~12! one gets

dp52
~F~X!2A!•G

K•G
~13!

and the mean value

^dp&5
Y

k
2

^y&
k
. ~14!

The averagê y& can be calculated using different assum
tions concerning the invariant measure of the attractor wit
the escape region. We consider two cases:~i! when the
points of the attractor are uniformly distributed alongwu ~on
the border of the escape region!, or ~ii ! within the whole
escape region. Using the linear approximatio
Y'm(p2pc) we get, after a proper integration,

^dp&'
2

3

m

k
~p2pc! ‘ ‘border average,’’ ~15!

^dp&'
2

5

m

k
~p2pc! ‘ ‘area average.’’ ~16!

The result~15! has been obtained using the approximatio

E
0

AY/a
ax2A114x2dxY E

0

AY/a
A114x2dx'Y/3

valid for smallY/a.

FIG. 7. Mean value of the time between control pulses as
function of the distanceB2Bc from the crisis. Solid line shows the
dependence obtained from Eq.~2!.
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IV. NUMERICAL RESULTS

The method described above was applied to control
intermittent behavior emerged in the spin map~8! for
lc50.105 494 2,tc52p, Ac51, and B.Bc51. As our
escape region we have chosen the one arisen from the
gency denoted byR in Fig. 3, its image is denoted byR8.
One can see both regions blown up in Fig. 5 after the cris
Figure 6 shows an example of the controlled dynamics
B51.005. Up tot52000, when the control was turned on
we can see intermittent jumps between both symmetric pa
of the attractor. Then, after jumping to the ‘‘upper’’ attracto
the system remained there until we switched the control
at t55000 and the intermittent dynamics followed agai
The relevant parameter changes,dB, are shown in Fig. 6~c!.
The control signaldBÞ0 was applied, on average, every 3
time steps and its mean value^2dB&50.0023. If we con-
sider the parameter changes at every time step, includ
dB50 we would obtain another mean value!2dB@
50.000 059!(B2Bc). The control was performed for dif-
ferent values ofB.Bc and the mean timet between subse-
quent control pulses and their amplitude^dB& was measured
as a function ofB2Bc . As we expected,t obeys the scaling
low ~2! ~Fig. 7!, but for a givenB2Bc it is smaller than the
mean time between jumps observed by us without contr
This means that some of our control interventions are unn
essary. If we look at Fig. 6 we note that at the uncontroll
dynamics, apart from the jumps between the ‘‘upper’’ an
‘‘lower’’ phases we have random spikes within the phas
that do not lead to the jumps. There are no such spikes in
controlled dynamics, so our control prevents both the int
phase jumps and the spikes within the phase. This is
result of a fractal structure of the basin of attraction~see Sec.

FIG. 8. Mean parameter change^dB& ~calculated overdB50)
vs the distance from the crisis obtained from Eqs.~15! ~solid line!
and ~16! ~dashed line!, and computer simulations~points!.
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V!. Figure 8 shows the mean amplitude of the control sig
^dB& compared to the calculations based on Eqs.~16! and
~15!. The actual values lie between both extreme lines
cause, as one can see in Fig. 3, the attractor is distrib
neither over the whole escape region nor along its border,
forms a~fractal! series of loops.

V. SUMMARY AND DISCUSSION

The method presented in this paper enables us to ke
chaotic system on a desired part of a chaotic attractor u
occasional control pulses proportional to the distance~in pa-
rameter space! from the crisisp2pc ; the mean frequency o
the pulses is 1/t, where t scales as (p2pc)

2g for small
p2pc . The parameter changes are typically greater th
those in the method described in@7,8#, but we do not have to
know the whole~arbitrary long! chaotic orbit to be stabilized
together with the linear properties of the system around e
point of the orbit.

The control procedure can be improved to achieve sma
parameter changes needed to perform it. First, one can t
minimize the coefficientm/k in Eqs. ~16! and ~15!. It de-
pends on which pair of escape regions we choose to con
Generically, one should iterate the controlled escape reg
backwards as far as possible, because thenm shrinks expo-
nentially:m}ulsun, wherels is the stable eigenvalue of th
mediating orbit. But, on the other hand, the region gro
exponentially~as uluun, lu is the stable eigenvalue of th
mediating orbit! in the other direction, so that it undergoes
series of stretchings and foldings and becomes fracta
n→`, and it is more and more difficult to control such a
area. Moreover, our approximation ofws by a straight line
andwu by a parabola~as in Fig. 4! is valid only for a few
preimages of the escape region, close to the mediating o
Thus, if one chooses an earlier preimage, the method of c
trol should be modified and Eq.~12! will not be valid.

Another way is to make use of the fractal structure of t
basins of attraction~Fig. 3!. In fact, not every point of our
escape region maps outside the desired part of the attract
a few time steps. The points being directly attracted to
other part form a fractal set within the region. Thus, if w
knew the location of the set, we could just move the syst
away from it with a much smaller parameter change, inst
of a shift out of the entire control region. Moreover, th
mean frequency of the control pulses would also decre
as, because of the structure of our escape region, some o
interventions are unnecessary and can be omitted.
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