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The influence of external forces on the properties of kinks in the ¢* equation is investigated. Depend-
ing on characteristic parameters, the model describes the interaction of a kink with a material impurity
or a phase boundary. In the presence of external forces, there are differences between stability condi-
tions for a kink treated as a point particle and for a kink investigated as an extended object. These
differences come from interactions of kink wings with zeros of external forces. An inhomogeneous exter-
nal force changes the spectrum of small oscillations around a kink, and additional bound states can ap-
pear. When this force has the form of a static two-well potential, chaotic kink motion is possible, pro-
vided the amplitude of an additional ac force is higher than a critical value.

I. INTRODUCTION

Solitons and solitary-wave solutions play an important
role in different branches of physics.”> Recently there
has been great interest in the influence on solitons of vari-
ous additional forces.>”> The physical origin of such
forces may be, for example, the presence of impurities
(nonmagnetic ions in spin chains), the inhomogeneity of
external fields, or the damping or coupling to other de-
grees of freedom. Usually it is assumed that these forces
are appropriately small because this is a condition of the
applicability of various perturbation methods.*

In the simplest of such methods, the so-called adiabatic
approach,® a soliton is treated as a structureless pointlike
particle and the perturbation influences only the position
and velocity of such an object. More exact results can be
obtained using the collective-coordinates approach
(CCA), i.e., employing an orthonormal set of eigenfunc-
tions which arises in the stability analysis of an unper-
turbed soliton.? Still another possibility is to combine the
perturbation analysis with the inverse scattering trans-
form,* however, this powerful tool can be used only when
the unperturbed system is completely integrable.

There are, however, some examples that show that the
magnitude of external perturbations plays an important
role in the system behavior. In fact,” for a completely in-
tegrable magnetic chain with two local anisotropies,® the
influence of Gilbert damping can be balanced by an addi-
tional external magnetic field so the kink can move with
constant velocity provided that the external field is lower
than some critical value (Walker field).” Moreover, re-
cent CCA-based calculations’® indicate the existence in
this system of another critical velocity connecfed to the
effect of the emission of spin waves by a moving kink (or
a domain wall).

In the present work we assume that the total external
force consists of two parts, F(x) and G (x,¢) (and a damp-
ing term). The force F(x) possesses such a form that we
are able to find an exact (static) kink solution @, (x) in the
presence of this force although we do not assume that
this force is small. Then we analyze the effect of any
small force G (x,t), applying the CCA with respect to the
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solution ¢y (x).

For simplicity we consider the ¢* model,'! which is
used, for example, in Ginzburg-Landau systems.!? Simi-
lar calculations can also be performed for other kink-
bearing systems like sine-Gordon,! double-sine-Gordon, 4
or anisotropic spin models.”

The plan of this work is as follows. In Sec. II, we ana-
lyze the influence of a static homogeneous force on a kink
motion. Section III deals with the problem of a special
inhomogeneous static force F(x). We find a static kink
solution and we perform a stability analysis of this solu-
tion. The problem of the small force G (x,t) added to the
force F(x) is considered in Sec. IV. In Sec. V, we apply
the results of earlier sections to study the chaotic move-
ment of a kink.

II. HOMOGENEOQOUS STATIC FORCE

Let us consider the following Hamiltonian describing
the one-dimensional ¢* model with some additional
space-time perturbation:

H= [[Hp P+ LUp P+ UP*— 1P —@F (x,0)ldx . (1)

The scalar field ¢(x,?) (for convenience we use dimen-
sionless time and space variables) is coupled here to
external force F(x,t) which can represent an impurity, a
boundary between two different phases, or an additional
external field. The standard equation of motion for the
system (1) can now be written as

Prx —Pu— VP Hio—1p*=—F(x,1), )

where ¥ (>0) is a damping constant. In the absence of
the force F(x,t) and damping ¥, there exist well-known
kink {antikink) solutions of Eq. (2) that are given by

@r(x,t)==%tanh[ LHx —vt —x4)/(1—0*)!?], (3)

where |v] <1 and the higher (lower) sign refers to a kink
(an antikink). We are interested in the existence and
properties of soliton solutions similar to Eq. (3) for a wide
class of external forces F(x,t) and in the presence of the
nonzero damping y.
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Let us siart from the simplest case, i.e., F(x,t)=const.
After some algebra we obtain the result that, if

Fl< L . @
then there exists the following solution:
@i (x,t)=C tanh[D (x —vt —x4)}/(1—0)V2]+E , (5)
where C=%(@;—@;)/2, D=(@p;—¢)/4, E=(¢p,
+,)/2, the velocity v fulfills the equation
yv/(1—v})2=1g,/2 , (6)

and @<@,<@; are the roots of the equation
¢—@*=—2F. For C >0 (<0) the solution (5) represents
a kink (an antikink). Because sgn(g,)= —sgn(F), we see
that the sign of the velocity v of the kink (of the antikink)
is opposite to (is the same as) the sign of the force F. Sim-
ple energetic arguments for this fact can be found in
Chap. (4.3) of the first of Refs. 2. Thus, in the presence of
the force F and damping y, the kink (or antikink) tends
to move with a velocity which is determined by Eq. (6)
that describes the balance between the effects of the driv-
ing force and the damping (compare this result to that
from Ref. 5). ‘

111, INHOMOGENEOUS STATIC FORCE

Now, let us consider the case of an inhomogeneous but
static force F(x,f)==F(x) and we shall look for a static
kink solution. Because of the sensitivity of direction of
kink motion to the sign of force F [for F(x,t)=const], in
the presence of an inhomogeneous force the position of
the center of a static kink (or antikink) will be in the
neighborhood of the first-order zeros x, of F(x). For
forces fulfilling the relation F(xy+x)=—F(x,—x), the
point x,, coincides with the center of a kink (antikink)
trapped by such an inhomogeneity. For such a case there
is also a simple condition of the stability of the equilibri-
um position of the kink (antikink) at the point x,,

dF
dx

(<)

> 2
*o

¢))

provided that there are no other zeros of F(x) besides x,.
However, there is also an analogue of condition (4) in this
case. It can be formulated in the following way. If the
stability condition (7) is not fulfilled, then there can exist
an unstable kink (or antikink) {centered at the point x)

provided that
[F(ic:o)]2<7‘7 .- (8

Now let us consider the special form of the (static)
force F(x) that is parametrized by constants 4 and B:

FAB(x)=14 (A%~ 1) tanh(Bx)
+14(4B*— 4%)sinh(Bx) cosh™(Bx) , 9)

(Fig. 1}, where the first term belongs to a nonlocal part of
this force and the second term represents a local part.
There are (at least) two interesting special cases of the

force O): (a) If A%:=1, then the force F45(x) represents
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an impurity localized at the point x =0. (b) If 42=4B2,
then force F 48(x) represents a typical boundary between
two different phases at x =0. The advantage of the pa-
rametrization (9} is that, putting (9) into (2), we obtain
immediately a static kink (or antikink) solution of the
later equation in the simple form

@i (x,t)= A tanh(Bx) . (10)
To investigate the stability of this solution, we consider
small-amplitude oscillations around ¢, (x,1#), i.e., we put

@lx, 1) =@ (x)+ f(x)e, (11)

where |f(x)| << 4. Linearizing in a standard way? Eq.
(2) around ¢, (x), we get for the function f (x) the follow-
ing equation:

~ fre(x)F[3A42—1—3 42cosh™Bx)]f (x)=Tf (x),
(12)

where I'=—A2—Ay. This equation is equivalent to the
Schrodinger equation for a particle in the so-called
Poschl-Teller potential.’> The spectrum for this potential
consists of a discrete and continuum part. The discrete
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FIG. 1. Behavior of the function F48(x) for various parame-

ters A and B.
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levels are described by the formula
T,=—L1+BYA+2An—n?), (13)

where the parameter A (>0) is defined by the equation
342=2B2A(A+1),n=0,1,2..., and n <A. The corre-
sponding eigenfunctions f, (they mean soliton-phonon
bound states) can be found in Refs. 15 and 16. We note
here only that the ground-state function (soliton transla-
tional mode) is given by

Sfolx)=cosh™*(Bx) . (14)

From (13) we see that the lowest eigenvalue is
I'y=B*A—1. Thus, the condition for stability of solu
tion (10) can be written as -

2B%A>1. (15)

It is interesting that, if one uses for our force (9) the rela-
tion (7), then one gets the stability condition

4B%>1 . (16)

We see that the stability condition (16) (that is, a condi-
tion based on the hidden assumption that a kink can be
treated as a point particle) is a sufficient condition for sta-
bility of a kink treated as an extended object [Eq. (15)]
provided that A=2. However, it is easy algebraically to
show that the last inequality combined with Eq. (16)
means that our force function F45(x) possesses only one
zero x,=0. In fact, function (9) possesses only one zero
provided that
L)

4B> _'1,

2B2A(A+1)( - )1

3 < .
[excluding the point 4B2=1, 2B?A(A+1)=1, where the
function F“%(x) disappears]. If we hold condition (16)
and diminish the parameter A, then, for
A(A+1)<3/(2B?), there appear two additional zeros
X113 of the function F #5(x) (see Fig. 1). These zeros can
be treated approximately as two unstable equilibrium po-
sitions of a kink reduced to a point particle. In the limit
A(A+1)—3/(2B%)+0,, we have |x ;)| — o, s0 that an
interaction of these zeros with kink wings (i.e., regions
where |Bx]>>1) is very small and the kink is still stable
at the position x,=0. However, when we hold Eq. (16)
and diminish A below the value 1/2B?, then these two
additional zeros are closer to the kink center x,=0 and
interactions of kink wings with these zeros are sufficiently
strong to make the whole kink unstable. One can say
that this instability occurs due to the extended (nonlocal)
character of the kink. Relations between regions of pa-
rameters B,A, where (a) the kink stability condition (15)
holds, (b) the “point-particle” (PP} stability condition (16)
is valid, and (c) there is only one zero of the force func-
tion F4B(x), i.e., condition (17) holds, are depicted at
Figs. 2 and 3. In region I, the PP is stable, there is only
one (stable) zero xy=0 and the kink is stable. In region
II, the PP is stable and there are three zeros (one stable
and two unstable) but the kink is still stable. In region

an
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FIG. 2. Different stability regions as functions of parameters
B and A (see discussion in text).

I11, the PP is stable, there are three zeros but the kink is
already unstable because two unstable zeros are close
enough to the point x, to make the whole kink unstable,
due to their interactions with kink wings. In region IV,
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FIG. 3. Positions of stable (solid lines) and unstable (dashed
lines) zeros of the function F##(x). Characteristic values of the
parameter A are given by equations: A’'=[(1+6/B%)'2—1]/2
and A*=1/(2B?) (compare with Fig. 2).
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the PP is unstable, there is only one (unstable) zero x, =0
and the kink is unstable. In region V, the PP is unstable,
there are three zeros (one unstable and two stable) but the
kink is still unstable. In region VI, the PP is unstable,
but the kink is already stable because two stable zeros are
close enough to the point x; to insure the kink stability
due to their interactions with kink wings.

Moreover, it follows from (13) that, depending on the
values of parameters B and A (or B and A), there can be
more than one negative “energy level” I',, which means
physically an instability of the kink (10) against the per-
turbations of internal structure. Besides the bound states
fa(x) [and, connected with them, discrete levels I",, given
by (13)], there are also continuum states f(x) represent-
ing extended phonon states with eigenvalues

C>342—1. (18)

IV. INHOMOGENEOUS TIME-DEPENDENT FORCE

Now let us consider a small space-time-dependent per-
turbation G(x,t) that exists beside the constant force
F43(x) given by (9), i.e., we consider the equation
Pxx ~Pu ~VPr T3P~ 3@° =—F Bx)— G (x,1) (19)

with |G (x,2)| << |F4B(x)]. We can expand the function
G (x,t) in a basis spanned by the system of eigenfunctions

|

Prx — P VP, +1p—Lp*=B(1—4B?)tanh(Bx)—g,(t) cosh™%(Bx)—g, (¢) sinh(Bx) cosh~%(Bx)

[we assume that there is no force g, (¢) conjugated to the
continuum spectrum]. Instead of Eq. (22), we get two
equations

Ho(2)+vhol2)+(2B2—L)ho()=g4(1) ,
Eyn+yh (6)+(5B —L1)h (1)=g,(1),

(25a)
(25b)

and an appropriate equation describing the behavior of
the continuum spectrum. If g,(#),g,(#)=0 and the stabil-
ity condition for the translational mode holds, i.e.,
4B?%> 1, then the kink can perform damped oscillations
around the position x =0 combined with damped oscilla-
tions of the kink shape. In the opgosite case, the kink
can move away. Moreover, if 10B“ <1, then the shape
mode becomes unstable and the kink is ‘“plastic’” against

shape deformations (compare this to the result in a

double-sine-Gordon model'*). One can also show that
the condition for the stability of the continuum spectrum
is 12B2>1. We stress that the instability of the shape
mode and the instability against the emission or absorp-
tion of phonons occur in the situation where the kink is
accelerating due to the instability of the translational
mode. If the external force gy(¢) is not a constant, then if
the translational mode of the kink is stable, it is possible
to sustain the permanent oscillations of the kink center;

on the other hand, the periodic force g,(¢) can cause os-
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Snlx)and £ (x)
G (x5, 0)= 37, (g, (0+ [ 7 firlxlge 0k (20)
and we write a solufior; in the following form:
@(x,t)= A tanh(Bx)+ ¥ f,(x)h,(1)
n
+ [T fehndk L 1)

In the standard way>'® we can now write equations of

motion for the functions A (¢) in the form of a system of
uncoupled, driven, damped oscillators (an overdot means
a time derivative):

B ) F ¥ Ry o O+ T B (D=8 (12 - (22)

These equations describe the dynamics of a soliton under
the action of the force F#4%(x) and the perturbation
G (x,t). If the force g, (¢) is time periodic, e.g.,

i)=& ) cOS(@, 1y8)

then there is a possibility of resonances if any frequency
®, x) obeys the condition

@y =(Tppy—12/8)1% .

Let us now consider an example, i.e., the case when
A =2. Instead of Eq. (19), we now write

(23)

(24)

—

cillations of the shape (mostly of the width of the kink)
whose amplitude depends on the amplitude and frequen-
cy of the force g (t).

V. CHAOTIC MOTION

We shall now show the kink in the presence of some
special inhomogeneous force F(x) and the external force
G (x,t) can exhibit a chaotic motion. Let us assume that

B(4B?—1)tanh[B(x +x,)] for x <0,
F(x,t)= 10 for x =0,
B(4B?*—1)tanh[B(x —x,)] for x >0,

(26)

where 4B%>1 and we choose the force G(x,t) in the
form

P, cos(wt)cosh 2[B (x +x,)] for x <0,

Glx,0= Py cos(wt) cosh™[B (x —x)] for x >0 .

27
If the amplitude P, equals zero, then the two stable equi-
librium positions of the kink center are approximately x,
and —Xp, ie., there are stable solutions
@i (x)=2B tanh[B (x%x,)] (the point x =0 is an unsta-
ble position of the center of such a kink). This fact means
that the force (26) acts on the kink g@,(k) like some
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effective two-well potential on the point particle. If
P,70 but |Py| <<1, then it follows from Eq. (22) that, de-
pending on the initial condition, the center of the kink os-
cillates harmonically around the positions +x,. Howev-
er, for larger values of the amplitude P, noslinear effects
can occur that are connected to (a) jumping of the kink
center between two positions x =x, and x =—Xx,, and
(b) coupling between different modes f, and f. The first
of these effects can be compared to the behavior of a
point particle whose motion is given by the Duffing equa-
tion'’

zt,+'yzt—z+z3=p0 cos(wt) . (28)
It is well known!” that there is chaotic behavior of the
solution of (28) for some set of parameters ¥, py, and ;
thus, we can also expect that the motion of the kink in
the presence of the forces (26).and (27) will be chaotic.
This chaotic behavior should especially occur if the kink
jumps between two wells of the effective potential coming
from the force (26). An approximate condition for such
jumps can be obtained as follows. Suppose that the kink
is in the neighborhood of point x,. Taking into account
(21), we can write an approximated form of such a kink
as

@r(x,t)=2B tanh{B (x —x4)]

+hy(t) cosh 2[B(x —x4)] - 29)
However, if we calculate the center of mass of solution
(29), it differs from x, for the value |x,|=|hry/(2B?)|.
So, the condition of the jumping of the kink between the
wells centered at x =+tx, is |k /(2B)?| > x,, where h0 is
the amplitude of the translational mode
ho(t)=h3 cos(wt +8). This amplitude follows from (25a)
and can be written as

|h8| =Pl /(@3 —0®P+(yw)* ], (30)

where w§=2B%—1. Ce S

VI. SUMMARY AND CONCLUSIONS

We have investigated the behavior of a kink of the ¢*
equation in the presence of an additional time- and
space-dependent force F(x)+G(x,t) and a damping.
For the case of a homogeneous, static force, we found
moving, stationary solutions provided the magnitude of
the force is smaller than some critical value. In the pres-
ence of an inhomogeneous, static force there exist static
kinks whose centers are connected (or coincide) with the
positions of zeros of this force. We investigated in
greater detail a family of inhomogeneous, static forces
F“B(x), special cases of which correspond to the presence
of a localized impurity or a boundary between different
phases (or materials). We found a static kink solution for
this family of forces and we performed a stability analysis
of this solution. It occurs that the inhomogeneous force
changes significantly the spectrum of bound states and
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extended states {phonons) that can exist as small-
amplitude oscillations around a kink solution. Although
for a kink solution with no external force there are only
two bound-state solutions (and continuum states), in the
presence of the external force the kink acts on phonon
states like a Pdschl-Teller potential well on a quantum
particle. It follows that, depending on the values of the
parameters of the force F 4%(x), there are several bound
states (besides continuum states). Contrary to the case of
an unperturbed ¢4 kink, in the presence of the external
force the eigenvalue connected to the lowest bound state
can be different from zero. This can be easily understood
because, due to the presence of the inhomogeneity, there
is no translational invariance of the system so there is no
place for a Goldstone mode in this case. The inhomo-
geneity can cause this eigenvalue to be positive, which
means that the kink is stable against translation (trapping
of the kink by the impurity or the material boundary), or
it can change this eigenvalue to be negative, which means
the kink is unstable against translation movement. More-
over, it can occur that not only the lowest bound state is
unstable but also higher bound states (shape modes) or
even a part of the continuum spectrum can lose its stabil-
ity.

The condition of kink stability, i.e., the condition that
the lowest eigenvalue of the stability operator is positive,
is not equivalent to the stability condition that one ob-
tains from simple energetic considerations treating the
kink as a point particle. The reason for this fact is that, if
the force function F“4B(x) possesses several zeros, it
influences not only the kink center but also the kink
wings, i.e., the spatial extended character of the kink is
important in such a case.

We also considered the problem of the time-dependent
force. We found that, if such a force possesses an ap-
propriate space shape (that is, it coincides with one of the
eigenfunctions of the kink stability operator), then it is
possible to get a resonance of the kink provided the fre-
quency of such a force coincides with the resonance fre-
quency of this mode. It means, for example, that one can
pump energy to the translational kink mode (one can
move a kink) using some time-dependent force that is
fitted to the shape of the translational mode. We used
this fact to suggest the possibility of chaotic motion of
the kink if the static inhomogeneous force acts on the
kink as a two-well potential on the point particle and
there is the additional time periodic force that can move
a kink from one potential well to another.

In comparison to other studies of the soliton-impurity
interactions,*!® we find that it is important to consider
the behavior of higher soliton-phonon bound states in the
presence of the impurity. These higher bound states are
connected to the kink shape and, if one precludes investi-
gations to the stability of the translation mode only, then
a kink is treated as a point particle; i.e., one neglects its
extended character.

Finally, we remark that, because bound states related
to the internal soliton structure are important from the
point of kink-kink and kink-antikink scattering,'® the nu-
merical simulations of such events should give especially
interesting results in the presence of impurities.
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