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An analysis of general properties of traveling waves that can exist in one-dimensional damped
‘systems is presented. It is shown that, depending on the symmetry of the potential and the pres-
ence or absence of dissipation, different classes of localized solutions in the form of kinks, pulses,

and semisolitons are possible.

It is now generally accepted that solitons or solitary
waves 2 play a crucial role for many phenomena appear-
ing in one- or quasi-one-dimensional models of solids.3*
The main aim of this Brief Report is to discuss the general
properties of various solitary waves that can exist in the
form of kinks or pulses in certain nonlinear, driven damped
systems. Although similar models have been widely ex-
plored by several authors®~? as well as by ourselves'%!! we
think that there is a necessity to generalize some hitherto
obtained results and to show how these results can be
achieved in a more direct way, as well as to point out that
there are several interesting types of solitary waves that
have not been considered up to now in corresponding sys-
tems.

We analyze the classical scalar one-dimensional model
described by the following equation of motion:
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where G (¢) =—[dU(¢)/d¢l. We assume that the poten-
tial U(¢) is an analytical function of ¢ and that it
possesses three extrema, which means two minima in
points ¢; and ¢3 and a maximum in a point ¢g», ¢; < ¢ < ¢3
(Fig. 1). We also assume that (d°U/d¢?);=,, <0 and
U(¢1) =0. The parameter R in Eq. (1) plays the role of a
linear damping constant (R = 0), while the constant ¢ is a
characteristic velocity of the considered model. Similar
equations are widely used to describe, for example, one-
dimensional ferroelectrics® or charge-density-wave sys-
tems. 3

We are interested in the solutions of Eq. (1) in the form
of traveling waves, e.g., ¢(x,t) =¢(x — vt ), where a veloc-
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FIG. 1. Potentials U(¢) and ¥ (¢) = —U{(g).

ity v is a constant not depending on time. It is convenient
to introduce the variable z =(x —vz)[1 — (v/c)?] 12,
The partial differential equation (1) can now be rewritten
in a form of ordinary differential equation,

d?¢(z) , do _ _ dv(e)
dZ‘z + y dZ d¢ 9 " (2)

where y=Ru/[1—(/c)?1Y?, V(p)=—U(¢). We see
that Eq. (2) may be treated as a Newtonian equation of
motion for a damped wunit-mass point particle moving in
the inverted potential V' (¢) (Fig. 1). The variable z plays
in Eq. (2) the role of “time” for the particle. We shall fur-
ther widely explore the useful equivalence between a tra-
jectory of the point particle from Eq. (2) and the shape of
a traveling-wave solution from Eq. (1).

If a traveling wave possesses a shape of a localized soli-
tary wave then lim,—. —w¢(z)=¢;, lim,_..¢(z) =9,
where i,j =1,2,3. This means that the corresponding par-
ticle from Eq. (2) moves for an infinitely long time be-
tween certain extrema of the potential ¥ (¢). In a natural
way one can distinguish several special cases for Eq. (1).

(1) In the simplest case of zero damping (R =0) and a
degeneracy of maxima of the potential V(¢), e.g.,
V(g1) =V (¢3), Eq. (1) has well-known!~!! kink and an-
tikink solutions (Fig. 2). These solutions can be treated as
domain walls connecting two different domains of degen-
erated ground states of potential U(¢). From Eq. (2) we
see that the kinks correspond to the motion of the particle
between two degenerated maxima ¥ (¢;) and ¥V (¢3). We
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FIG. 2. Big kink solution of Eq. (1) for ¥ (g,) =I}(¢3), R =0.
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shall call these kinks “big kinks” to distinguish them from
other kinks (“little kinks”) that can appear in damped sys-
tems. The big kinks can move with any constant velocity
from the range (—c,c).

Let us now consider the situation when R =0, but
V(¢1) > V(¢3). In our mechanical model described by
Eq. (2) we need to consider separately both cases when the
particle possessing zero initial velocity [(d¢/dz);=—w
=(] starts its motion to the right from the point ¢ =¢; and
when the particle starts its motion to the left from the
point ¢ =¢3. Obviously, in the first case the particle will
come to the point ¢ =¢; with nonzero velocity and it will
still move to the right with an increasing velocity d¢/dz.
This particle trajectory corresponds to the nonlocalized
traveling-wave solution of Eq. (1) (see Fig. 3). It is easy
to show that if one introduces a Hamiltonian correspond-
ing to Eq. (1) then such a nonlocalized solution has an in-
finite energy; thus it possesses rather limited physical
relevance. On the other hand, the particle starting its
motion with the zero velocity from the point ¢ =¢; (and
moving to the left) will come back to the same point and
stop there. Such a particle trajectory corresponds to the
interesting solution of Eq. (1) in the form of a solitary-
wave pulse (Fig. 4). A “turning point” ¢% (see Fig. 1)
describing the amplitude of this pulse can be determined
from the condition V(¢3) =V (¢3), ¢ < ¢3 <¢3. The
shape of the pulse ¢, (z) can be obtained from the first in-
tegral of Eq. (2),

dop(z)
dz

={2[V (¢3) =V (9,01} /2 . (3)

The pulse can be treated as a bound pair kink-antikink. If
we continuously symmetrize the form of the potential
V(¢) such that the difference ¥ (¢;) — ¥ (¢3) tends to zero
then the turning point ¢% tends to ¢,, and the pulse dissoci-
ates into an uncoupled pair of infinitely separated kink and
antikink. This is due to the fact that the integral

o do

D20V () —V (eI}
tends to infinity when ¢% tends to ¢, because, due to the
analyticity of the potential ¥ (¢) in this limit in the neigh-

borhood of ¢%, the integrand diverges at least as
(¢1—9¢%) ~\. Pulses, similarly as kinks described before,

(4)
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can possess any velocity v from the range (—c,c). For
V(¢1) <V(¢3) the shape of the pulse is inverted [Fig.
4(b)].

(2) Now we shall consider Eq. (1) with the parameter
R > 0. When the velocity v of the traveling wave is equal
to zero, then the parameter y in Eq. (2) is also equal to
zero and the solutions of Egs. (1) and (2) for this case are
the same as the undamped cases analyzed earlier. When
the velocity v is not equal to zero, then ¥ is also not equal
to zero, and the “point particle” is damped or accelerated
(depending on the signature of the velocity v of the corre-
sponding traveling wave).

When the potential ¥(¢) is symmetric, e.g., V(¢;)
=V (¢3), then from the energy-conservation principle it is
obvious that there are no solutions of Eq. (2) describing
the motion of the particle starting with zero velocity from
the point ¢ =¢; and stopping at the point ¢ =¢3, or vice
versa. It means that for symmetric potentials in the pres-
ence of dissipation there are no big kink solutions of Eq.
(2) moving with a constant nonzero velocity. Of course,
static big kinks are possible in this case.

Let us now suppose that parameter y in Eq. (2) is posi-
tive, potential ¥ (¢) is asymmetric, and ¥ (¢;) > ¥V (¢3). If
we consider the motion of the point particle moving with
zero initial velocity from the point ¢; to the right, depend-
ing on the value of the parameter y for the fixed potential
V(¢), there are six types of “particle trajectories,” and
there are six corresponding shapes of traveling wave.

(a) For small values of y parameter the point particle
from Eq. (2) will reach the lower minimum of potential
V(¢) (e.g., ¢=¢3) with certain nonzero velocity [(d¢/
dz )4m=g, > 0] and then it will move further to the right of
this point. The corresponding shape of a traveling-wave
solution is similar to that from Fig. 3 representing an unlo-
calized solution.

(b) For a certain value of parameter y=y; the particle
will stop at the point ¢ =¢3. Such a trajectory corresponds
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FIG. 3. Unlocalized traveling-wave solution for ¥F(¢;)
> V(¢3), R=0.

FIG. 4. Pulse solution of Eq. (1); (@) ¥ (¢1) > V(¢3), (b)
Vig) <V(¢s).
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to the kink solution of Eq. (1) similar to that from Fig. 2.
The value of the velocity v of this kink comes from the
equation 7 =Rv[l—@®?%c?)]1~2, From Eq. (2) it is
easy to obtain the following relation®’ between the value
of the parameter 7, and the shape of the kink ¢ (z ):

2
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Suppose now that ¥ (¢) =V(¢) +¢e¥1(¢), where Vo(g) is
a symmetric potential [e.g., Vo(¢;) =Vo(63)], ¥1(¢) is an

asymmetric potential, and < 1. Using the perturbation
scheme~31! one can rewrite Eq. (4) in the following form:

Ro=%¢lvi(p)) ~Vi(p)1 / f:[ =2Vo(p)12dg , (6)

which is the equation on the velocity v. We see that Eq.
(6) has the form of Stoke’s law for a particle driven by a
constant effective force in a viscous medium.3-%10:11

(¢) For higher values of y the particle will not reach the
point ¢3 and it will oscillate with decreasing amplitude
around the point ¢,. A linear stability analysis of Eq. (2)
around this point leads to the eigenvalue equation
Al+yA+a=0, where a=(d*¥/d$?),m=,, Thus for y2
<4q the oscillations are damped but not overdamped.
This motion of the point particle corresponds to the so-
called®!! “semisoliton kink™ and it is illustrated in Fig.
5(a). ) '

" (d) For still higher values of the parameter y(y?> 4a)
the motion of the particle is overdamped. The correspond-
ing kink solution is illustrated in Fig. 5(b). We see that
this solution has a form of a kink similar to that from Fig.
2, but the topological charge of this kink (little kink) is
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FIG. 5. (a) Semisoliton solution; ¥ (¢1) > ¥ (3), y>0. (b)
Little kink solution; ¥ (¢1) > V (93), y> 0.
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equal to ¢3—¢,, while for the big kink from Fig. 1 it is
equal to ¢3—¢;. Unlike the big kinks that, for a specified
potential ¥ (¢) and a specified value of a damping con-
stant R, can move with only one velocity defined by Egs.
(5) or (6), little kinks can move with any velocity v for
which the following inequality holds:

R2vz/[1——l%

4

>4q . 7

(e) There are also two possible point particle trajec-
tories and two corresponding traveling-wave solutions that
are analogous to semisolitons and small kinks from Figs.
5(a) and 5(b), respectively, but a starting point for these
trajectories is not ¢ =¢;, but ¢ =¢3. Of course both sem-
isolitons as well as little kink solutions are also possible for
a symmetric type of potential ¥V (¢;) =V (¢3).

(f) Concerning the pulse soliton solutions described by
Eq. (3), it is easy to show that in the presence of dissipa-
tion this kind of solution can be only possible as a static
one.

We assumed that all traveling-wave solutions described
in points (a)-(e) possessed positive velocities. Besides
them there are also corresponding solutions moving with
negative velocities. These solutions correspond to the
motion of the “accelerated point particles” from Eq. (2).
For example, for a kink ¢z (z) moving with a positive ve-
locity v defined by Eq. (5) there exists antikink ¢.4(z)
=¢,(—z) moving with the negative velocity (—v).

The elementary stability analysis for all the solutions
that we have discussed can be performed using, e.g.,
methods described in Refs. 7, 8, and 11. The final result of
this analysis is that big kinks are stable against small per-
turbations both in the presence as well as in the absence of
the dissipation. The zero frequency mode of small oscilla-
tions around the big kinks is the Goldstone mode connect-
ed with restoring the translational symmetry of the system
broken by the kink existence. On the other hand, neither
the pulse soliton nor the semisoliton solutions are stable.
The highest eigenvalues of the stability operators for these
solutions are positive in both cases. It is due to the fact
that for these solutions there is such a point z at which the
derivative d¢/dz vanishes.

In conclusion, we can state that the analysis of general
properties of solitary waves that can appear in one-
dimensional damped multistable systems can be illustra-
tively performed when the mapping of the original prob-
lem onto a mechanical model of damped point particle
motion is used. We have shown that for symmetric poten-
tials and zero damping the only possible type of solitary
wave solutions are big kinks. They are stable and they can
move with the constant velocity from the range (~c¢,c),
where c is the characteristic velocity of the system. For
asymmetric potentials and zero damping instead of big
kinks, there are moving pulses that can be treated as

- bounded pairs kink-antikink.

The most interesting case is the problem of an asym-
metric potential with damping included. In such a system,
besides unlocalized traveling waves (that can appear in all
cases), there are big kinks moving with a velocity whose
value comes from the balance between the asymmetry of
the potential and damping effects; moving little kinks and
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semisolitons as well as static pulses are also possible. In
the case of a symmetric potential and nonzero damping the
big kinks can be only static, and solutions in the form of
pulses do not exist while the moving little kinks and sem-
isolitons are still allowed.
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