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Dynamics of the classical Heisenberg ferromagnet
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Dynamical properties of a classical anisotropic Heisenberg ferromagnet are analyzed by means of
the stereographic representation for spin variables. The Gilbert damping term is included, and the
failure of the complex time rescaling to account for damped solutions is shown. It is argued that the
stereographic projection approach allows for formulating the damped Heisenberg ferromagnet
dyhamics within the mixed canonical-dissipative method. Finally the Benjamin-Fair instability of
the finite-amplitude spin waves in the anisotropic Heisenberg chain is discussed.

The continuum limit of a classical low-dimensional
spin system is a convenient proving ground for a variety
of modern theoretical concepts, particularly those related
to nonlinear dynamics. The analysis of the behavior of
such a system is usually greatly facilitated by the proper
choice of dynamical variables. For a one-dimensional
chain one has a variety of p0531ble choices of such vari-
ables: conventional polar angles, scattering data,’ or less
familiar curvature-torsion ones.® Th latter variables are
particularly useful in the analysis of an isotropic Heisen-
berg chain. For easy axis or easy plane chains curvature-
torsion variables seem to be of little use.

All these variables, except the polar angles, neither gen-
eralize easily to more than one spatial dimension nor are
they useful for the description of damped systems, at least
within the Gilbert-Landau-Lifshitz theory.

In a recent very interesting Letter Lakshmanan and
Nakamura® suggested that the stereographic projection of
spin onto a complex plane may be the optimal choice.
The aim of this report is to look more closely at this sug-
gestion, to point out certain weak points in the Laksh-
manan and Nakamura analysis, and to show explicitly
how the description by means of stereographic projection
variables works in practice. We shall show that those
variables allow us to formulate the dynamics of a system
described by the Gilbert-Landau-Lifshitz equation within
the scope of the so-called mixed canonical-dissipative for-
mulation of the many-body physics’ and, henceforth, al-
low for a novel statistical mechanical description. Details
of that aspect of the theory are planned to be published
elsewhere.® We shall also show how the stereographic
variables allow us to find new exact solutions for anisotro-
pic chain dynamics and to assess their stability.

We begin with recollection of some points from Ref. 4.
Consider a classical spin field S(R,¢), where R is a vector
in d-dimensional space and 7 stands for the time variable.
We shall assume, without the loss of generality, that

| S(R,#}| =1. The Gilbert-Landau-Lifshitz equatlon can
now be written as

9,S(R,1)=S X Bs—AS X{SXB.), (1)
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where By is an effective field felt by the spin at the point
R, and A is the Gilbert damping parameter A > 0.

For systems we are interested in By can be derived
from a Hamiltonian H {S}; B.=—8H {S}/8S(R,?). For
the sake of definiteness we shall consider systems for
which the exchange and the local anisotropy energies are
the only contributions to H. Thus we write

H{S}=% [ d'R{VS?+24(S-n)}, @)

where A is the anisotropy coefficient and n is the aniso-
tropy direction which we choose to coincide with the z
axis of the coordinate system.

Following Lakshmanan and Nakamura* we introduce
complex field o(R,¢) via which spin field can be described
according to the stereographic projection rules. Thus,

o(R,t)=(S*+iS¥)/(14-8%) . 3

One sees from Eq. (3) that the o field shares some similar-
ity with the bosonic field operator known from the con-
tinuum limit of the Holstein-Primakoff representation.
Using the representation of Eq. (3), Lakshmanan and
Nakamura have found, that the Gilbert-Landau-Lifshitz
equation can be rewritten as

3,0=i(1—iA){ Vo —[20*(Vo)?
—240(1—{o|HI/(1+|a |} .
4)

Note, that for small | o |, i.e., for large polarization of the
system along the z axis one easily obtains from Eq. (4) the
spectrum of damped spin waves

o(k)=(k?—24)1—i}) . (5)

The simple, multiplicative depe}ldence of the frequency on
the rescahng factor (1—iA) is in fact misleading. In the
general case’ one does not obtain the solution of Eq. (4)
from those with A=0 by simple rescaling of the time vari-
able t—¢(1—iA). The reason for that is that the right-
hand side of Eq. (4) depends in a nonanalytic fashion on
the o variable. To see this more clearly, write down equa-
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tions for both o and ¢* and consider both of them as in-
dependent (canonical) variables (see below). Now, of
course, both equations are perfectly analytic, however, one
can see that the damping factor enters those equations dif-
ferently. Thus there is no unique rescaling for both
canonical variables, and that makes the scheme impracti-
cal. (The same is true for simple equation o =ic* which
real time solutions do not fulfill, after rescaling, the com-
plex time equation.)

In splte of this, Eq. (4) is very useful also for damped
systems, i.e., for As£0. To see this, consider first the un-
damped case. Using Egs. (2) and (3) one rewrites the
Hamiltonian H as a functional of the field o:

H{o)= [d°R[2| Vo |*+A4(1—|o|221/(1+ |0 |22.
(6)

Making use of the well-known Poisson brackets (PB)
for spin variables, i.e.,

{SUR,1),SAR",1)}pp=8(R—R")e*P'SY(R,1), (7)

we calculated the Poisson brackets for the fields o:
{a(R,t),a*(R’,t)}pB=—é—S(R—~R’)(1+ lo|2?. (8)

All the other brackets do vanish.
Having Eqgs. (6) and (8) we can reformulate dynamics of
the spin system entirely in terms of the o field. Indeed

o(R,t)={o(R,1),H }pg
=iVlg—i[20*(Vo)?
—240(1—|a |3/ 1+ |a|D, ©)

i.e.,, A=0 version of Eq. (4).

Now, the form of the Gilbert dissipation term to be
added to Eq. (9) can be established on the basis of purely
geometrical considerations. Indeed, writing fo=38X B
and f, =8X f- we note that vectors S, f¢, and £, form
a local triad of mutually orthogonal vectors (a local
frame). Since the right-hand side of Eq. (1) equals
fc—Afp one expects that o=g-—Agp, where g, stands
for the right-hand side of Eq. (9).

Using the chain rule of differentiation and the ortho-
gonality of the local frame vectors we easily find that

gp=iegc with real €. Since |[fo|=|fp| = |e|=L1.
The sign of € follows from the physwal requirement that
d
—H{o . (10)
at {o} <

Equation (10) impliés that
2

0>—2e [ (1+ |o|2?d°R, (11)

thus e=1. Therefore gp =igc.

The above fact allows us to bring Eq. (4) into the gen-
eral scheme of the so-called mixed canonical-dissipative
formulation of the many-body dynamics.” Denoting
P=(7x) we write Eq. (9) as

qa(R, 0= [ dR'L pz(R,RBH (Y} /8Y5(R"),  (12)

where L p(R,R")={,(R) 1,03 (R")}pp is the antisym-
metric matrix with off-diagonal matrix elements given by
Eq. (8).

Now, the dissipative term can be added to Eq. (12) by
replacing the kernel L,z by D,p=L,3—AD,p with
D zbeing a symmetric matrix equal to

Dyp=itycLes, _ (13)

where 75 is the zth Pauli matrix.

Followmg the general canonical-dissipative formula-
tion”® we can develop statistical mechanics for the
Gilbert-damped Heisenberg ferromagnet along the line
analogous to that used in hydrodynamics.”®7® In a
forthcoming publication we shall present a more detailed
account of that problem. In particular, we shall address
the problem of how the mode-mode coupling modifies the
value of the Gilbert-damping coefficient, and how that
depends on the system spatial dimensionality.$

Equation (9) can also be useful in finding and analyzing
exact solutions for the anisotropic Heisenberg chain. It is
well known that the isotropic Heisenberg chain supports,
in addition to the nontopological envelope solitons, also
ﬁmte-amphtudc spin waves. It has been shown previous-
ly® that those waves exhibit the Benjamin-Fair instability
which has close relations to the Fermi-Pasta-Ulam re-
currence.

Here, we will show that a similar situation exists in the
anisotropic chain, but now the instability depends on the
sign of the anisotropy coefficient A4.

. Consider now Eq. (9) and write o{R,t)=exp{O(R,?)
+i¢(R,t)} with both 8 and ¢ real. In one spatial dimen-
sion it follows from Eq. (9) that 6 and ¢ obey equations:

é, = — tanh@(6% —d% ) +0rg —24 tanh@,
0,=2tanh@(Ordp)—Prr -

(14a)
(14b)

The finite-amplitude spin waves are the solutions of Egs.
(14) with 8 =8p=const and ¢(R,?)=kR —wt.

It follows then from Eq. (14) that @ and k obey the
dispersion relation

k?+wcothfy=24 . (15)

This obviously generalizes the A=0 case of dispersion
relation (5). It is actually instructive to see that 8=48,,
¢=kR —wt{1—iA) is not an exact solution for the full
Eq. (4). For A =0, we recover from Eq. (15) the isotropic
chain result.

To assess the stability of our solutions we perform
linear stability analysis by writing

&(R,t)=¢o(R,t)+e4expli(gR —Q1)], (16)
0=00+e€gexp[i (gR — Q)] .

On substituting Eqgs. (16) into Egs. (4) and neglecting
terms with higher powers of €4 and €, we obtain the sta-
bility condition in the form

(Q+2kq tanh6o)*=q*[q?+ (24 —kZ)sech®d,] . (17)

One sees from Eq. (17) that the existence of the
Benjamin-Fair instability®® depends on the sign and mag-



nitude of the one-site chain anisotropy A. For easy plane

anisotropy, when A4 >0, the finite-amplitude spin waves_

are stable for the long wavelength when k& <Vv'24. When

k%>2A4 the Benjamin-Fair instability sets in and we

should see here similar effects as in the isotropic chain.
For easy axis anisotropy, i.e., when 4 <0 even k—0

waves are unstable for ¢ <gc=V2[A4 |sechf; The

discrete map analysis of Eq. (9) should reveal whether the
Benjamin-Fair instability shown above, and the related
Fermi-Pasta-Ulam recurrence lead to the chain chaotic
behaviors.

In conclusion we have shown that the stercographic
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projection of the spins proposed by Lakshmanan and
Nakamura can be a very useful tool in the description of
nonlinear dynamics of the anisotropic Heisenberg chain
and also in the formulation of the statistical mechanics
for Heisenberg ferromagnets. We have illustrated above
an example of the stability analysis for finite-amplitude

~ spin waves and the mixed canonical-dissipative formula-

tions of the dynamics.
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