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Abstract

Periodical perturbations of market dynamics are analyzed using a method of time scales sep-
aration similar to the approach that is usually applied for the analysis of Kapitza pendulum.
It is shown that if the perturbations are fast enough then the market oscillates around a new
equilibrium price that is shifted comparing to the equilibrium price of the unperturbed system.
The shift is proportional to the di�erence D′′(p)− S′′(p) between the curvature of demand and
supply functions. It follows that periodical perturbations will increase the equilibrium price of a
typical market. Numerical simulations are in a good agreement with analytical results.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the last few years there have been performed a lot of studies of economical
and social systems using tools of statistical physics, nonlinear dynamics and time series
analysis (for a review see Ref. [1]). Common examples are investigations of scaling
phenomena [2] and volatility clustering [3] for price changes or microscopic models
that are developed to understand the behaviour of agents acting at the market [4] and
in social groups [5]. The paper is devoted to the problem of disturbance of market by
fast periodic oscillations where time scales separation techniques well known from the
classical mechanics [6] can be applied. As far as we know this kind of approach has
not been used for studies of economical models.
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2. Kapitza pendulum—changing the mechanical equilibrium by fast periodic
oscillations

One of classical examples of the Control System Theory is the problem of the
so-called inverted pendulum [7]. The goal is to keep a mass attached to a rigid rode in
the inverted vertical position. The task can be solved due to many feedback methods,
i.e., by measurements of a temporary pendulum position (or measurements of corre-
sponding forces/torques) and by introducing appropriate rode movements to balance the
system. However, there exists also another, simple and spectacular method when the
pendulum can be stabilized without any feedback but only due to fast vertical oscilla-
tions of the pendulum support [6] (see Fig. 1). In fact, using parameters as depicted
in Fig. 1 and introducing an appropriate lagrangian [6] we get the following equation
of motion for the angle ’ describing the pendulum position:

ml2 H’ = −U ′(’) + f(’; t) ; (1)

where U (’) = −mgl cos ’; f(’; t) = −mla!2 cos(!t) sin ’, a is the amplitude of the
support oscillations, ! is its frequency and g is the gravitation acceleration. A natural
approach is to separate time scales by writing the variable ’(t) as the sum of a slow
part �(t) and a fast oscillating part �(t) where |�(t)|�|’(t)| and expanding the r.h.s.
of Eq. (1) into series of powers of the variable �

ml2( H� + H�) = −U ′(�) + f(�; t) − �U ′′(�) + �f′(�) : : : (2)

Now slow and fast terms can be separated and the equation for the fast variable
follows as ml2 H� = f(�; t) with the solution

�(t) = (a=l) cos(!t) sin � : (3)

Putting Eq. (3) into Eq. (2) and performing the time average one gets the equation for
the slow variable as ml2 H� = −U ′

e: (�) where

Ue: (�) = mgl
(
−cos � +

a2!2

4gl
sin2�

)
: (4)

Fig. 1. Kapitza pendulum.
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Fig. 2. The e�ective potential Ue: (�) in the model of Kapitza pendulum for di�erent values of the charac-
teristic parameter �.

One can see that if � = a2!2=(4gl) ¿ 1=2 then the potential Ue: (�) possesses a min-
imum for � = � (Fig. 2) that corresponds to the inverted position of the pendulum.
It follows that as the e�ect of a fast oscillating force a new equilibrium position of
the perturbed system can appear. One needs to stress that the potential Eq. (4) was
received using the perturbation theory and the exact dynamics of the system Eq. (1)
is more complex. If one increases the amplitude a then the inverted state undergoes
a cascade of resurrections, i.e., it becomes stabilized after its instability, destabilizes
again, and so forth ad inJnitum [8].

3. Changing equilibrium of the market

Now let us consider a market with a commodity traded at the price p(t). We assume
that time changes of p(t) are proportional to the temporal di�erence between the
demand D and the supply S where the both functions depend on the actual price p(t)

ṗ = j[D(p(t)) − S(p(t))] : (5)

If the price dynamics is described by Eq. (5) then the price tends to its equilibrium
value p = p∗ where D(p∗) = S(p∗). Now let us assume that the market is perturbed
by the presence of a periodic inLuence that can occur due to additional time-dependent
changes of supply or demand (e.g. the demand starts to depend on day time or a day of
a week). For simplicity we start from the simplest case when the periodic perturbations
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lead to the following equation

ṗ = j[D(p(t)) − S(p(t))] + a(p) sin(!t) : (6)

Here the constant ! corresponds to the frequency of market perturbations while a(p)
describes their price dependent amplitude. We assume that the period of market pertur-
bations T = 2�=! is much small comparing to the characteristic time T0 describing the
relaxation speed of the price towards its equilibrium value p∗. Now, similarly as in
the case of the Kapitza pendulum we split the price p(t) into its slow/large component
�(t) and the fast/small component �(t) and expand the r.h.s. of Eq. (6) into the series
of powers of �. As result we get

�̇ + �̇ = F(�) + F ′(�)� + 1
2 F ′′(�)�2 · · ·

+
[
a(�) + a′(�)� + 1

2 a′′(�)�2 + · · ·] sin(!t) (7)

where F(�) = j[D(�) − S(�)]. Taking into account the leading perturbation term at
the r.h.s. of Eq. (7) we get the following equation for the fast variable:

�̇ = a(�(t)) sin(!t): (8)

Since the variable �(t) changes in time very slowly comparing to the variable �(t)
and since the last variable should vanish for a = 0 we take the solution of Eq. (8) in
the form

�(t) = −a(�(t))!−1 cos(!t) : (9)

Now the equation for the slow variable evolution can be received by putting the solution
Eq. (9) into Eq. (7) and taking the time average. As a result we get

〈ṗ〉 = �̇ = j[D(�) − S(�)] + 1
4 j[D′′(�) − S ′′(�)]a2(�)!−2: (10)

It follows that the inLuence of fast periodic perturbations on the slow price component
is dependent on curvatures of demand and supply functions so it disappears when both
functions are linear.

It is easy to Jnd the shift of the mean equilibrium price due to the presence of the
fast perturbations. Expanding the equation for the price dynamics (10) into the series
of powers around the value p∗ we get

�̇ = j[D′(�) − S ′(�)](� − �∗) + · · · +
j[D′′(�) − S ′′(�)]a2(�)

4!2 : (11)

It follows that in the e�ect of fast oscillations the new equilibrium price 〈p〉∗ is shifted
from the old equilibrium by

Mp∗ = 〈p〉∗ − p∗ =
a2[D′′(p) − S ′′(p)]
4!2[S ′(p) − D′(p)]

: (12)

Now let us assume that the demand and the supply fulJll the following relations:
D′(p) ¡ 0; D′′(p) ¿ 0; S ′(p) ¿ 0 and S ′′(p) ¡ 0. The relations are frequently met
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Fig. 3. InLuence of fast periodic oscillations on the model Eq. (13) with parameters A = 12; B = 4;
a2 = −1; b2 = 0:5; j = 0:03, a = 4:08 and ! = 10. (a): price changes p(t) for the model, (b): evo-
lution of the slow variable �(t) taken as the time average of p(t) - dashed curve and the unperturbed price
dynamics—full curve.

and mean that the demand D(p) decreases slower than linearly with increasing price
p while the supply S(p) increases slower than linearly with the increasing price p.
The situation corresponds to the presence of saturation e�ects in demand and supply
characteristics. It follows that in such as case the e�ective inLuence of the fast variable
�(t) on the slow variable �(t) is to increase the average equilibrium price 〈p(t)〉 since
Mp∗ ¿ 0.

The result Eq. (12) gives the absolute value for the equilibrium price shift. Cor-
responding relative changes can be deJned as the ratio of Mp∗ to the equilibrium
price p∗ or to the amplitude of price changes �posc where the last value follows from
Eq. (9), �posc = a=!.

For numerical illustration of above results we have chosen a simple characteristics
for the demand and supply behaviour:

D(p) = Apa2; S(p) = Bpb2 ; (13)

where A ¿ 0; B ¿ 0; a2 ¡ 0; b2 ¿ 0 are model constants. The equilibrium price is
then given by

p∗ = (A=B)1=(b2−a2) : (14)

Fig. 3 shows results of numerical simulations for the model Eq. (13). One can observe
that in the presence of periodic oscillations the equilibrium price 〈p∗〉 is higher (for
parameters used in this simulation). Combining Eqs. (12) and (13) we get the following
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Fig. 4. (a–d) Relative changes of the equilibrium price p∗ as functions of system parameters for the model
13. Left scale: Mp∗=�posc, full squares (numerical values) and full lines (theory). Right scale: Mp∗=p∗,
open circles (numerical values) and dashed lines (theory). Theoretical values were obtained using Eq. (15).

relation for the price shift in the model (13):

Mp∗ =
a2[Aa2(a2 − 1) − Bb2(b2 − 1)pb2−a2 ]

4!2[Bb2pb2−a2+1 − Aa2p]
: (15)

Fig. 4 shows relative price changes Mp∗=p∗ and Mp∗=�posc as functions of di�erent
parameters of this model. One can see that the price shift Mp∗ can be comparable
to the amplitude of periodic perturbations �posc and can be of order of magnitude
of the original equilibrium price p∗. Negative values of price shift Mp∗ observed in
Fig. 4d occur for b2 ¿ 1, i.e., when S ′′(p) ¿ 0. There is a large disagreement between
analytical and numerical results observed for some regions of parameters a2 and b2

at Figs. 4c–d. This disagreement follows from the fact that for these values of model
parameters our analytical theory (basing on the approach of fast oscillations) is invalid
since the period of external oscillations T becomes comparable or larger than the
characteristic relaxation time T0 describing the speed of price relaxation towards its
equilibrium value. The latter period is given by

T−1
0 = j

{
S ′(〈p〉∗) − D′(〈p〉∗) +

a2

4!2 [S ′′′(〈p〉∗) − D′′′(〈p〉∗)]
}

(16)

and it is dependent on model parameters.
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In reality market perturbations are more complex and instead of one periodic force
as in (6) there is a sum of many periodic contributions

ṗ = j[D(p(t)) − S(p(t))] +
∑

i

ci(p) sin(!it + !i) : (17)

One can easily Jnd that if the frequencies !i and their di�erences |!j − !j| are large
comparing to the system characteristic frequency "0 = 2�=T0 then the corresponding
value for the equilibrium price shift is

Mp∗ = 〈p〉∗ − p∗ =
D′′(p) − S ′′(p)
S ′(p) − D′(p)

∑
i

c2
i

4!2
i

: (18)

4. Conclusions

In conclusion we have shown that fast periodic perturbations of the market lead
to a shift of resulting equilibrium price. The value of this shift has been calculated
by a method similar to the approach known from the analysis of Kapitza pendulum.
Since the shift is proportional to the di�erence D′′(p) − S ′′(p) between the curvature
of demand and supply functions thus it is positive for a typical market. Numerical
simulations are in a good agreement with the analytic theory.
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